
Using Web N-Grams to Help Second-Language Speakers

Martin Potthast Martin Trenkmann Benno Stein

Bauhaus-Universität Weimar

www.webis.de

1 Potthast at WEBNGRAM at SIGIR’10

http://www.webis.de

Introduction

2 Potthast at WEBNGRAM at SIGIR’10

Introduction

Writing in a foreign language is difficult.

Problems include

q Spelling

q Grammar

q Translation

q Word Choice

q Writing Style

Tools include

q Spell checkers.

q Grammar checkers.

q Dictionaries, (machine translation).

q Thesauri.

q Style checkers.

Anything missing?

3 Potthast at WEBNGRAM at SIGIR’10

Introduction

What about text commonness?

4 Potthast at WEBNGRAM at SIGIR’10

Introduction

What about text commonness?

Correctness vs. Commonness

We present NETSPEAK, a tool

q to assist with word choice, and

q to check phrase commonness.

NETSPEAK implements wildcard queries on top of a Web n-gram index.

5 Potthast at WEBNGRAM at SIGIR’10

http://www.netspeak.cc

6 Potthast at WEBNGRAM at SIGIR’10

http://www.netspeak.cc

Wildcard N-Gram Retrieval

7 Potthast at WEBNGRAM at SIGIR’10

Wildcard N-Gram Retrieval

Given a set of n-grams, n ≤ 5, and their frequencies.

A query q defines a pattern as a sequence of n-grams and wildcards.

A wildcard may be substituted for a defined subset of the n-grams.

Given a query q, retrieve all n-grams that match q.

8 Potthast at WEBNGRAM at SIGIR’10

Wildcard N-Gram Retrieval

Given a set of n-grams, n ≤ 5, and their frequencies.

A query q defines a pattern as a sequence of n-grams and wildcards.

A wildcard may be substituted for a defined subset of the n-grams.

Given a query q, retrieve all n-grams that match q.

Straightforward solution:

q Construct a keyword index for the n-grams.

q Retrieve all n-grams that contain all of q’s words.

q Compile a pattern matcher from q and filter the retrieved n-grams.

Improvements:

q Exploit information encoded in queries and n-grams, and that n is small.

q Exploit closed retrieval settings, e.g., the n-gram set is constant.

q Trade wildcard expressiveness and retrieval recall for time.

q Exploit information about the application domain.
9 Potthast at WEBNGRAM at SIGIR’10

Wildcard N-Gram Retrieval

use the same ?

q Only 4-grams can match.

q First word use, second word the, third word same.

Our index stores information about n-gram length and word position in the

pre-image of the index lookup function.

prefer * over

q 2- to 5-grams can match.

q First word prefer, and last word over.

Variable-length queries are sub-divided into fixed-length queries:

prefer over; prefer ? over; prefer ?? over; prefer ??? over

More search heuristics are described in [Stein et al., ECIR’2010]

10 Potthast at WEBNGRAM at SIGIR’10

http://www.netspeak.cc

11 Potthast at WEBNGRAM at SIGIR’10

http://www.netspeak.cc

Wildcard N-Gram Retrieval

12 Potthast at WEBNGRAM at SIGIR’10

Wildcard N-Gram Retrieval

Given a set G of n-grams, n ≤ 5, and their frequencies f : G → N.

A query q defines a pattern as a sequence of n-grams and wildcards.

A wildcard may be substituted for every n-gram from a defined subset of G.

Given a query q, retrieve all n-grams R from G that match q.

13 Potthast at WEBNGRAM at SIGIR’10

Wildcard N-Gram Retrieval

Given a set G of n-grams, n ≤ 5, and their frequencies f : G → N.

A query q defines a pattern as a sequence of n-grams and wildcards.

A wildcard may be substituted for every n-gram from a defined subset of G.

Given a query q, retrieve all n-grams R from G that match q.

Straightforward solution:

q Construct an inverted index µ : V → P(G), where V is G’s vocabulary.

q Retrieve all n-grams R =
⋂

w∈q µ(w) that contain all of q’s words w ∈ V .

q Compile a pattern matcher from q and filter R.

Improvements:

q Exploit information encoded in queries and n-grams, and that n is small.

q Exploit closed retrieval settings, e.g., if G is constant.

q Trade wildcard expressiveness and retrieval recall for time.

q Exploit information about the application domain.
14 Potthast at WEBNGRAM at SIGIR’10

Wildcard N-Gram Retrieval

NETSPEAK’s approach:

q Construct an inverted index µ : V × {1, . . . , 5}
︸ ︷︷ ︸

n-gram length

× {1, . . . , 5}
︸ ︷︷ ︸

word position

→ P(G)

q Sort µ(w, i, j) in descending order of f , where w ∈ V and i, j ∈ {1, . . . , 5}.

15 Potthast at WEBNGRAM at SIGIR’10

Wildcard N-Gram Retrieval

NETSPEAK’s approach:

q Construct an inverted index µ : V × {1, . . . , 5}
︸ ︷︷ ︸

n-gram length

× {1, . . . , 5}
︸ ︷︷ ︸

word position

→ P(G)

q Sort µ(w, i, j) in descending order of f , where w ∈ V and i, j ∈ {1, . . . , 5}.

q Subdivide q into {q1, . . . , qm} so that Rq =
⋃m

i=1
Rqi

, and each qi matches only

n-grams with a fixed length. Process the sub-queries in parallel.

q Retrieve all n-grams Rqi
=

⋂

w∈qi
µ(w, |qi|, qi|w), where qi|w is w’s position in qi.

16 Potthast at WEBNGRAM at SIGIR’10

Wildcard N-Gram Retrieval

NETSPEAK’s approach:

q Construct an inverted index µ : V × {1, . . . , 5}
︸ ︷︷ ︸

n-gram length

× {1, . . . , 5}
︸ ︷︷ ︸

word position

→ P(G)

q Sort µ(w, i, j) in descending order of f , where w ∈ V and i, j ∈ {1, . . . , 5}.

q Subdivide q into {q1, . . . , qm} so that Rq =
⋃m

i=1
Rqi

, and each qi matches only

n-grams with a fixed length. Process the sub-queries in parallel.

q Retrieve all n-grams Rqi
=

⋂

w∈qi
µ(w, |qi|, qi|w), where qi|w is w’s position in qi.

q Start to process each µ(w, i, j) at entry k, with f(µ(w, i, j)k) ≤ ming∈q(f(g)).

q Stop to process each µ(w, i, j) at entry

|µ(w, i, j)| if the postlist is smaller than a page, or

l1 if a pre-specified amount of results have been retrieved, or

l2 if
∑l2

i′=0
f(µ(w, i, j)i′) covers κ% of the frequency distribution.

17 Potthast at WEBNGRAM at SIGIR’10

