On Filtering the Web

Web Information and Quality Evaluation 2010

Nedim Lipka - nedim.lipka@uni-weimar.de

Valencia, September 14, 2010

Outline

On Filtering the Web

Web Information and Quality Evaluation 2010

Nedim Lipka - nedim.lipka@uni-weimar.de

Valencia, September 14, 2010

Outline

Information Filtering Characteristics and Tasks Machine Learning

On Filtering the Web

Web Information and Quality Evaluation 2010

Nedim Lipka - nedim.lipka@uni-weimar.de

Valencia, September 14, 2010

Outline

Information Filtering Characteristics and Tasks Machine Learning

Exploiting Unlabeled Data Semi-Supervised Learning Co-Training

Characteristics

Information Retrieval (IR)

- A user has an information need.
- A query (imperfectly) represents the information need.
- An IR-system is typically used in a one-time fashion.

Information Filtering (IF)

- Groups or individuals have regular information interests.
- A profile or a query represents a regular information interests.
- An IF-system is typically used repeatedly by persons with long-term goals.

Tasks

Filtering issues: ...spam, quality, fraud, authorship, genres, topics, sentiment, humor, language, gender, writing-styles...

Example: Identifying featured articles in Wikipedia

Filtering is sometimes challenging. E.g. identifying featured articles in Wikipedia, where a featured article is:

Filtering with Machine Learning

Overview.

Representations

Word 3-grams

Word 3-grams

Word 3-grams

Word 3-grams

```
    cpp> <a>
    <n>
    <n>
    <v>
    <det>

    Our Web-based plagiarism analysis application takes the suspicious docu...
```

```
<a> <n> <n> <n> <n> <v> <det>
Our Web-based plagiarism analysis application takes the suspicious docu...
```

A Content- and Style-based Representation: Character 5-grams

Example: Identifying featured articles in Wikipedia

Setting.

- Extracted Plaintexts from English Wikipedia.
- 180 featured / 180 non-featured biology articles.
- 200 featured / 200 non-featured history articles.

Example: Identifying featured articles in Wikipedia

Results.

Representation	Classifier	Identification of featured articles (P/R/F)	
Cross Validation.		within Biology	within History
bin char trigram	SVM	0.966 / 0.961 / 0.964	0.888 / 0.955 / 0.920
bin POS trigram	SVM	0.949 / 0.933 / 0.941	0.889 / 0.925 / 0.907
word count	SVM	0.755 / 0.600 / 0.669	0.874 / 0.870 / 0.872
bag of words	NB	0.832 / 0.989 / 0.904	0.860 / 0.950 / 0.903
Domain Transfer.		$History \rightarrow Biology$	$Biology \rightarrow History$
bin char trigram	SVM	0.800 / 0.978 / 0.880	0.886 / 0.855 / 0.870
bin POS trigram	SVM	0.799 / 0.883 / 0.839	0.898 / 0.790 / 0.840
word count	SVM	0.772 / 0.733 / 0.752	0.878 / 0.830 / 0.853
bin bag of words	SVM	0.800 / 0.889 / 0.842	0.930 / 0.665 / 0.776

Example: Identifying featured articles in Wikipedia

The most discriminative character trigrams.

```
d_a
ing
                            e,_
                                                  \operatorname{\mathsf{ed}}_{-}
       ng_
              ,_a
                     at_
                                   er_
                                           an
_be
                                    ted
                                                  tha
       ter
              s_a
                     _re
                            as_
                                           g_a
                                                         n_t
                     th
                            nd
                                                  sed
       1y_
              to_
                                    . a
                                           on
                                                         t_t
_a_
```

transitions affixes

Can unlabeled data be useful?

The Semi-Supervised Smoothness Assumption

"If two points x_1, x_2 in a high-density region are close, then so should be the corresponding outputs y_1, y_2 ."

The Cluster Assumption

"If points are in the same cluster, they are likely to be of the same class."

"The decision boundary should lie in a low-density region."

The Cluster Assumption

"If points are in the same cluster, they are likely to be of the same class."

"The decision boundary should lie in a low-density region."

The Cluster Assumption

"If points are in the same cluster, they are likely to be of the same class."

"The decision boundary should lie in a low-density region."

The Manifold Assumption

"The (high-dimensional) data lie (roughly) on a low-dimensional manifold."

The Manifold Assumption

"The (high-dimensional) data lie (roughly) on a low-dimensional manifold."

Co-Training

Goal:

• Extend the labeled training set.

Requirements:

- Unlabeled data.
- Two representations (views).

Co-Training

Goal:

- Extend the labeled training set.

Requirements:

- Unlabeled data.
- Two representations (views).

Co-Training: Algorithm

Input:

- Labeled training examples L
- Unlabeled examples U

Create a sampling pool $U' \subset U$. For k iterations:

- 1. Train classifier h_1, h_2 with L considering representation $\mathbf{x_1}, \mathbf{x_2}$ of \mathbf{x} .
- 2. Classify U' with h_1 , remove p positive and n negative examples with the highest confidence and add them to L.
- 3. Classify U' with h_2 , remove p positive and n negative examples with the highest confidence and add them to L.
- 4. Randomly choose 2p + 2n examples from U to replenish U'.

Co-Training: Constraints

1. Each view should be sufficient for correct classification.

Co-Training: Constraints

- 1. Each view should be sufficient for correct classification.
- 2. Independence assumptions on the representations...

Co-Training: Constraints

- class-conditional independence

Co-Training: Constraints

- class-conditional independence
- weak dependence

Co-Training: Constraints

- class-conditional independence
- weak dependence
- ϵ -expansion

Co-Training: Can a the learning algorithm benefit from self-labeled data?

"... remove p positive and n negative examples with the highest confidence and add them to L."

The precision at a high confidence ought to be high in order to compile a valuable training set.

Precision - Confidence

90% training data (900 documents): 86,3 acc. (inlinks) - 92,4 acc. (page)

Co-Training: Can a the learning algorithm benefit from self-labeled data?

"... remove p positive and n negative examples with the highest confidence and add them to L."

The precision at a high confidence ought to be high in order to compile a valuable training set.

Precision - Confidence

50% training data (500 documents): 86,5 acc. (inlinks) - 90,7 acc. (page)

Co-Training: Can a the learning algorithm benefit from self-labeled data?

"... remove p positive and n negative examples with the highest confidence and add them to L."

The precision at a high confidence ought to be high in order to compile a valuable training set.

Precision - Confidence

10% training data (100 documents): 87,4 acc. (inlinks) - 91,4 acc. (page)

Co-Training: Can a the learning algorithm benefit from self-labeled data?

"... remove p positive and n negative examples with the highest confidence and add them to L."

The precision at a high confidence ought to be high in order to compile a valuable training set.

Precision - Confidence

5% training data (50 documents): 84,6 acc. (inlinks) - 90,7 acc. (page)

Co-Training: Can a the learning algorithm benefit from self-labeled data?

"... remove p positive and n negative examples with the highest confidence and add them to L."

The precision at a high confidence ought to be high in order to compile a valuable training set.

Precision - Confidence

1% training data (10 documents): 86,3 acc. (inlinks) - 69,6 acc. (page)

Co-Training: Experiment

Setting.

- Corpus with 230 course and 821 non-course webpages.
- Selection of 3 positive and 9 negative examples in each iteration.
- Initial sampling pool U' contains 75 examples.

Co-Training: Experiment

Co-Training: Experiment

Co-Training: Experiment

La Sinopsis

Remember:

When trying to solve some problem, one should not solve a more difficult problem as an intermediate step.