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Information Filtering
Characteristics

Information Retrieval (IR)

A user has an information need.

A query (imperfectly)
represents the information need.

An IR-system is typically used
in a one-time fashion.

Information Filtering (IF)

Groups or individuals have
regular information interests.

A profile or a query represents a
regular information interests.

An IF-system is typically used
repeatedly by persons with
long-term goals.
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Information Filtering
Tasks

Filtering issues: . . . spam, quality, fraud, authorship, genres, topics,
sentiment, humor, language, gender, writing-styles. . .
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Information Filtering
Example: Identifying featured articles in Wikipedia

Filtering is sometimes challenging. E.g. identifying featured articles in
Wikipedia, where a featured article is:
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Information Filtering
Filtering with Machine Learning

Overview.

Bauhaus-Universität Weimar
                         Contact >> nedim.lipka@uni-weimar.de

Web Technology and Information Systems

Identifying Featured Articles in Wikipedia
Writing Style Matters

by Nedim Lipka and Benno Stein  - www.webis.de

Problem: Is a Wikipedia article featured or not?

Relevant use cases
  

  Finding candidates for featured articles
  

  Finding featured articles that might 
  loose their featured status

Evaluation

Approach: Classifying Trigram Vectors

Writing style and authorship indicatorsMost discriminative character trigrams (information gain)
 ing  ng_  ,_a  at_  e,_  er_  _an  ed_  d_a
 _be  ter  s_a  _re  as_  ted  g_a  tha  n_t
 _a_  ly_  to_  _th  nd_  ._a  on_  sed  t_t

0 2000 8000 1000060004000

non-featured
featured

6×10-4

4×10-4

2×10-4

0×10-4

Biology

0 2000 8000 1000060004000

non-featured
featured

6×10-4

4×10-4

2×10-4

0×10-4

History

Representation Identification of featured articles (F)

< 1500 words 1500–2500 words > 2500 words

Length Sensitivity. History → Biology

1% featured articles 22% featured articles 77% featured articles

bin char trigram 1.000 0.860 0.885

word count ⊥ 0.677 0.852

Length Sensitivity. Biology → History

3% featured articles 8% featured articles 89% featured articles

bin char trigram ⊥ 0.316 0.888

word count ⊥ ⊥ 0.905

Representation Classifier Identification of featured articles (P/R/F)

Cross Validation. within Biology within History

bin char trigram SVM 0.966 / 0.961 / 0.964 0.888 / 0.955 / 0.920

bin POS trigram SVM 0.949 / 0.933 / 0.941 0.889 / 0.925 / 0.907

word count SVM 0.755 / 0.600 / 0.669 0.874 / 0.870 / 0.872

bag of words NB 0.832 / 0.989 / 0.904 0.860 / 0.950 / 0.903

Domain Transfer. History→ Biology Biology→ History

bin char trigram SVM 0.800 / 0.978 / 0.880 0.886 / 0.855 / 0.870

bin POS trigram SVM 0.799 / 0.883 / 0.839 0.898 / 0.790 / 0.840

word count SVM 0.772 / 0.733 / 0.752 0.878 / 0.830 / 0.853

bin bag of words SVM 0.800 / 0.889 / 0.842 0.930 / 0.665 / 0.776

Corpus construction
  

  Plaintexts from English Wikipedia
  180 featured / 180 non-featured biology articles
  200 featured / 200 non-featured history articles

affixes

punctuation

transitions

stopwords

Classification Character Trigram Vectors
   Input:                      “Banana!”
  Vocabulary:            [ban,ana,nan,na!]T

  L1-Normed Vector: [0.2,0.4,0.2,0.2]T

  Binarized Vector:    [1,1,1,1]T

[0,0.01,...,0.05]T

P = Precision
R = Recall
F = F-measure

SVM = (here: linear) support vector machine
NB = Naive Bayes
POS = Part of Speech

Part of Speech Trigram Vectors
  Input:                      “Big volcanoes are
                unpredictable.”
  Vocabulary:            [JJ,NNS,VBP,SENT]T

  L1-Normed Vector: [0.4,0.2,0.2,0.2]T

  Binarized Vector:    [1,1,1,1]T

Related Work
  

  Features based on revision history, editors, citations,
  readability indices, links ... or simply the word count.

A featured article is...

Length Sensitivity Analysis of SVMCross Validation and Domain Transfer

Probability density over absolute word count
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Information Filtering
Representations

O ur  W e b- ba s e d pla gia r is m a na ly s is  a pplic a tio n ta k e s  the  s us pic io us  do c u. . .
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Information Filtering
Word 3-grams
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Information Filtering
Part of Speech 2-grams

<pp>  <a >                  <n>                 <n>            <n>                  <v >     <de t> 
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Information Filtering
A Content- and Style-based Representation: Character 5-grams
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Information Filtering
Example: Identifying featured articles in Wikipedia

Setting.

Extracted Plaintexts from English Wikipedia.

180 featured / 180 non-featured biology articles.

200 featured / 200 non-featured history articles.
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Information Filtering
Example: Identifying featured articles in Wikipedia

Results.
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Information Filtering
Example: Identifying featured articles in Wikipedia

The most discriminative character trigrams.
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Exploiting Unlabeled Data
Can unlabeled data be useful?

Motivation

Large datasets freely (or cheap) available, e.g. on the Internet
However, most data is unlabeled
Labeling is expensive, if not impossible for large datasets
Can unlabeled data be used to increase accuracy?
Semi-Supervised Learning uses few labeled examples together with
many unlabeled instances
Co–training is a semi-supervised learning (SSL) technique
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Exploiting Unlabeled Data
The Semi-Supervised Smoothness Assumption

“If two points x1, x2 in a high-density region are close, then so should be
the corresponding outputs y1, y2.”
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Exploiting Unlabeled Data
The Cluster Assumption

“If points are in the same cluster, they are likely to be of the same class.”

“The decision boundary should lie in a low-density region.”

Clustering Assumption: Example

(a) (b) (c)

Constant (low) density sample distribution (b)
High density sample distribution in homogeneous regions (c)

Few labeled examples → profit from unlabeled examples?
Only, if density distribution is helpful!

Max Große (Bauhaus-Universität Weimar) Advanced topics in IR June 21, 2010 7 / 24
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Exploiting Unlabeled Data
The Manifold Assumption

“The (high-dimensional) data lie (roughly) on a low-dimensional
manifold.”

Manifold Assumption: Example

?

Actual distribution (2D) on 1D manifold(s)
Only few labeled examples not helpful to classify an unknown
Sample distribution not on manifold → hard to classify

If sample distribution on 1D manifold, unlabeled data can be useful!

Max Große (Bauhaus-Universität Weimar) Advanced topics in IR June 21, 2010 6 / 24
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Exploiting Unlabeled Data
Co-Training

Goal :

Extend the labeled training set.

Requirements:

Unlabeled data.

Two representations (views).

Co–Training on WebKB Dataset

Classify university web-pages into course pages, and other.
Split views for co–training:

1 Words in Links pointing to each page
2 Bag of words from page content

Compare with EM classification, where EM uses both views as single,
merged view
Both, Co–training and EM use näıve Bayes

<a href=>

<a href=>

words in links: view 1

words on page: view 2

Max Große (Bauhaus-Universität Weimar) Advanced topics in IR June 21, 2010 10 / 24
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Exploiting Unlabeled Data
Co-Training: Algorithm

Input:

Labeled training examples L

Unlabeled examples U

Create a sampling pool U ′ ⊂ U. For k iterations:

1. Train classifier h1, h2 with L considering representation x1, x2 of x.

2. Classify U ′ with h1, remove p positive and n negative examples with
the highest confidence and add them to L.

3. Classify U ′ with h2, remove p positive and n negative examples with
the highest confidence and add them to L.

4. Randomly choose 2p + 2n examples from U to replenish U ′.
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Exploiting Unlabeled Data
Co-Training: Constraints

1. Each view should be sufficient for correct classification.

2. Independence assumptions on the representations...
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Exploiting Unlabeled Data
Co-Training: Constraints

class-conditional independence

weak dependence

ε-expansion

X1 X2

x1

x2

Pr(S2|S1) = Pr(S2)

Figure 4: Illustration of the conditional independence assumption stated in
theorem 4.3

each view. The conditional independence assumption can now be stated as
follows:

Theorem 4.3 (Conditional Independence Assumption) For any S1 ⊆ X+
1 , S2 ⊆

X+
2 , we have

Pr(S2|S1) = Pr(S2)

This follows the definition of conditional independence of any random vari-
ables and states that any two features from different views x1 and x2 are
required to be conditionally independent given their classification. This as-
sumption is illustrated in figure 4. Here, two different views X1 and X2 are
shown in the same illustration. For both views, a hyperplane separates pos-
itive and negative regions. For a given example (x1, x2) (circled in red and
connected by an arc), the conditional independence assumption states that
whenever the confidence of x1 is high, no assumption on the confidence of
x2 can be made. Figuratively, this means that whenever x1 is far from the
hyperplane, the position of x2 with respect to its corresponding hyperplane
is arbitrary.
This is a rather strong assumption, and question is if it is really required. For
example, the independence assumption required for Bayesian classification is
usually ignored while still accurate results are achieved, which motivates fur-
ther investigation for Co–Training as well.

8
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Exploiting Unlabeled Data
Co-Training: Constraints

class-conditional independence

weak dependence

ε-expansion

X1 X2

x1

x2

Pr(S2|S1) ≥ αPr(S2)

Figure 5: Illustration of the weak dependence assumption stated in theorem
4.4

4.2 Weak Dependence Assumption

In deed, it has been shown[1] that a weaker assumption suffices. The weak
dependence assumption can be stated as

Theorem 4.4 (Weak dependence) For all S1 ⊆ X+
1 , S2 ⊆ X+

2 , we have

Pr(S2|S1) ≥ αPr(S2)

for some α > 0

This is again illustrated in figure 5 in the same fashion as the conditional
independence assumption is illustrated in figure 4. The weak dependence
assumption is weaker in that for a given example (x1, x2) (again, circled in
red), whenever the confidence of x1 is high, no assumption on the confidence
of x2 has to be made, but can be made in that the confidence of x2 may be
biased towards low. Figuratively, this means that whenever x1 is far from the
hyperplane, the position of x2 with respect to its corresponding hyperplane
may tend to be closer to the hyperplane. Thus it is obvious, that the weak
dependence assumption includes the conditional independence assumption,
but allows for a bias.

4.3 ε-Expansion Assumption

The previously introduced weaker dependence assumption can be further
relaxed in form of the ε-expansion assumption. It has been shown[2] that
already this assumption suffices.
Let Pr(S1∧S2) the probability mass on examples for which we are confident

9
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Exploiting Unlabeled Data
Co-Training: Constraints

class-conditional independence

weak dependence

ε-expansion

X1 X2

x1

x2

Pr(S2⊕S1) ≥ ε min[ Pr(S2⋀S1), Pr(S2⋀S1)]

Pr(S2⋀S1)

Pr(S2⊕S1)

Pr(S
2⋀S

1 )

Figure 6: Illustration of the ε-expansion assumption stated in theorem ??

about both views and let Pr(S1 ⊕ S2) the probability mass on examples for
which we are confident about just one.

Theorem 4.5 (ε-Expansion Assumption) D+ is ε-expanding, if for any S1 ⊆
X+

1 , S2 ⊆ X+
2 , we have

Pr(S1 ⊕ S2) ≥ εmin
[
Pr(S1 ∧ S2),Pr(S̄1 ∧ S̄2)

]
.

It is required that for a distribution D, D+ is ε-expandable.

This assumption is illustrated in figure 6. This means, the event that the
confidence under just one view is high while the confidence under the other
view is low is more likely than the event that either both confidences are high
or both confidences are low. Figuratively this means, when for a given x1
which is far from its hyperplane, its corresponding x2 is close to the hyper-
plane (red) is more likely than cases where both are far from the hyperplane
(green) or both are close to the hyperplane (blue).
Eventually, this implies the initial theorem 4.2 stated in the beginning, which
is already rather intuitive: If in most cases both classifiers are unsure on the
examples, it is impossible to learn successfully and additional data is of no
use. Likewise, if both classifiers are always certain on every example, they
cannot learn from each other and therefore they won’t benefit from unlabeled
data neither. Consequently, it is required and sufficient, if there are examples
for which one classifier has a high confidence while the other classifier has
only a low confidence, so the classifier with the low confidence is actually
able to learn from this new example.
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Tradeoff: classifier performance - potential for improvement
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Exploiting Unlabeled Data
Co-Training: Can a the learning algorithm benefit from self-labeled data?

“. . . remove p positive and n negative examples with the highest
confidence and add them to L.”

The precision at a high confidence ought to be high in order to compile a
valuable training set.

Precision - Confidence

90% training data (900 documents): 86, 3 acc. (inlinks) - 92, 4 acc. (page)
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Exploiting Unlabeled Data
Co-Training: Can a the learning algorithm benefit from self-labeled data?

“. . . remove p positive and n negative examples with the highest
confidence and add them to L.”

The precision at a high confidence ought to be high in order to compile a
valuable training set.

Precision - Confidence

50% training data (500 documents): 86, 5 acc. (inlinks) - 90, 7 acc. (page)
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Exploiting Unlabeled Data
Co-Training: Can a the learning algorithm benefit from self-labeled data?

“. . . remove p positive and n negative examples with the highest
confidence and add them to L.”

The precision at a high confidence ought to be high in order to compile a
valuable training set.

Precision - Confidence

10% training data (100 documents): 87, 4 acc. (inlinks) - 91, 4 acc. (page)
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Exploiting Unlabeled Data
Co-Training: Can a the learning algorithm benefit from self-labeled data?

“. . . remove p positive and n negative examples with the highest
confidence and add them to L.”

The precision at a high confidence ought to be high in order to compile a
valuable training set.

Precision - Confidence

5% training data (50 documents): 84, 6 acc. (inlinks) - 90, 7 acc. (page)
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Exploiting Unlabeled Data
Co-Training: Can a the learning algorithm benefit from self-labeled data?

“. . . remove p positive and n negative examples with the highest
confidence and add them to L.”

The precision at a high confidence ought to be high in order to compile a
valuable training set.

Precision - Confidence

1% training data (10 documents): 86, 3 acc. (inlinks) - 69, 6 acc. (page)
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Exploiting Unlabeled Data
Co-Training: Experiment

Setting.

Corpus with 230 course and 821 non-course webpages.

Selection of 3 positive and 9 negative examples in each iteration.

Initial sampling pool U ′ contains 75 examples.
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Exploiting Unlabeled Data
Co-Training: Experiment
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Exploiting Unlabeled Data
Co-Training: Experiment

Results Blum/Mitchell

0

5%

10%

15%

20%

25%

30%

0 5 10 15 20 25 30 35 40
Co-Training Iterations

C
la

ss
ifi

ca
tio

n 
Er

ro
r

Hyperlink-Based

Page-Based

„Always Negative“

Naive Bayes

EM after n iterations

Max Große (Bauhaus-Universität Weimar) Advanced topics in IR June 21, 2010 19 / 24
26 / 27



Exploiting Unlabeled Data
Co-Training: Experiment
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La Sinopsis

Remember:
When trying to solve some problem, one should not solve a more difficult

problem as an intermediate step.
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