Feature Associations in Graph Structures for
Unsupervised Entity Disambiguation

Roman Kern
rkern@know-center.at

WIQE10 / 2010-09-14



Overview

Motivation

Approach
Model
Algorithm

Applications
Tag Recommender
Machine Translation
Information Retrieval
Crosslingual Plagiarism Detection
Unsupervised Entity Disambiguation

Conclusions



Anatomy of a Knowledge Discovery R Knsw
Application

» Input: Data stored in repositories
» Structured vs. unstructured data
» Textual vs. multi-media content
» Single vs. multiple repositories

» Preprocessing of input into data-structures suitable for
algorithms

» Apply algorithms on data-structures

» Output: Visualize & store result
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Feature Engineering Ty KW
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» Transform data into features

» Feature extraction: Words, Syntax, Statistics, ...

» Feature representation: Plain Text, Arrays, Matrix, Graph, ...
» Specific algorithms need specific data-structures

» High Level: Information Extraction, Classification, Clustering,
Information Retrieval, ...

» Low Level: SVD, EVD, SVM, HAC, BM?25, LSA, LDA,
TFIDF, CRF, KNN, HMM, ...

» Example: Vector Space Model
> Input: Documents
» Features: Terms
» Data-structure: Matrix
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Feature Associations bR
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» Additional transformation step

» Network of features
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» Example: Term co-occurrences

Goal: Framework for feature associations

» Calculate feature associations
» Provide data-structure for feature associations

» Support feature engineering
» Feature analysis
» Feature synthesis
» Support application development
» Common data-structure for algorithms from various domains



Algorithmic Issues WY Knsw
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How to represent different features?

» Associations between features of different types
> More features could lead to better results
» Example: String kernels for classification

» But: More features definitely lead to more expensive
computation

How to integrate external knowledge?

» WordNet, ConceptNet, Linked Data, LDAP, ...

How to calculate the association weight?

» Correlation, statistical tests, probabilities, ...



Practical Issues Ty KRsw
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How to deal with data that does not fit into main memory?
» Enterprise scale
» Example: English Wikipedia: 107 documents, 10° terms
How to integrate (exploit) heuristics?

» Strong (naive) independence assumption, Zipf's law, Heaps'
law, small world networks, distributional hypothesis, ...




Approach - Overview T K

Feature association framework

» Calculate feature associations
> Input: Extracted features in graph-like structures
» Output: Feature network

» Access feature associations
» Traverse feature network

Solves algorithmic and practical issues

» Provides an scalable algorithmic approach for large scale
datasets

» Flexible to allow the integration of rich set of features and
external sources

» Allows the integration of a range of graph operations to build
the association network



Approach - Generalizations
Starting Point
» Vector Space Model: Inverted Index

» Simple feature representation: Matrixpocumentsx Terms

» Simple feature operations: cossim(row(M, i), row(M, j))

Generalize Feature Representation

» Generalization of the simple matrix model

» Allows integration of additional information, e.g. term
positions, external sources, linguistic annotations, ...

Generalize Feature Operations

» Generalization of the operations on the features

> Allows integration of algorithms, e.g. Levenshtein edit
distance, SVD, clustering, ...



Generalize Feature Representation WY Knsw
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Feature Data-Structure

» Matrix can be transformed into a bi-partite graph
Terms
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» Bi-partite graph can be generalized to a n-partite graph
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Generalize Feature Operations WY Knsw
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Matrix Feature Function

» Matrix multiplication
_ T
Mn.n = M0 x M,
» General matrix transformation
My = F (M, M)
n,m m,n», m,n
» Simple Example - Matrix transposition

T
anm = Mm,n

Not only for matrices, but graphs too.
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Feature Operation Functions

» Feature association function - (i, )
f(node;, nodej) = wgiopai(a(node;, node;), G)

a(node;, nOdej) = Waggregate({Wcombine(/(i)a 1G))})
/(nOdex) = Wloca/(nOdeX7 E)

> Input variables
» Local - £: word-forms, position, term frequency, document
length, ...
» Global - G: document frequency, dispersion, co-occurrence
count, average document length, ...

» Examples

» Cosine Similarity, Jaccard, Windowed Co-Occurrence, Poisson,
Pascal, Binomial, PMI, Conditional Probability, Conditional
Entropy, Mutual Information, x2, Log Odds, ...
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Properties WA Knsw
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Runtime Complexity

» Runtime complexity of O(n? x m)
» Wikipedia: 10*° Operations

Algorithm

» Number of heuristics to keep computation feasible

» Expects power law
» Expects globally sparse, but locally highly connected

» Execution can be done in parallel

» Map-Reduce friendly
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Implementation WA Knsw

Graz University of Techmology

> Implementation tailored towards contemporary computer
architecture: Memory Access < Disk Access
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Tag Recommender - Tagr (SASU)

> Item based tag recommender system

Input data: Folksonomy (Flickr subset)
Features: Tags, Photos
Data-Structure: Bipartite Graph (Matrix)

Feat f tion: wi i — sharedPhotos; ;
€ature runcuon: w;; = mean(photoCount;,photoCount;)

Feature association retrieval: Lookup

vV V. v vy
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Folksonomy Analysis WY Knsw

Gra y of Technology

» Statistical Analysis of a Folksonomy

» Input data: Folksonomy (Flickr subset) stored in SQL-database
» Features: Tags, Photos, Users, Title, Description and
Comments
Data-Structure: N-Bipartite Graph
Feature function: Cosine
Feature association retrieval: Spreading Activation, Distance

phototags

phdtos Description o . Deslinn
Ti

346535, PhOt0 5058,

photofavorite
0.05 (0.34) 0.13 (0.3)

comments Comment 398023,

Comment 0.09 (0.84) User
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Machine Translation WY Knsw

raz Uriversiy of Technology.

» Word alignment for query translation

» Input data: multilingual corpus Influence of the Query Transiation
(Wikipedia, Europarl) 3] "+ No Tensiaton
., +- Cosine
» Features: English words, Spanish N \\ - TR
words AN
BN
. . 5 LN
» Data-Structure: article aligned 23 NG
8 N,
. & N
corpus, 3-partite graph i
» Feature function: Cosine, ° N
Correlation, TFIDF
» Feature association retrieval: % o2  os o8 08 1o
Recall

Spreading Activation
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Information Retrieval Ty KW

Graz University of Technology

» Global query expansion for cross-lingual information retrieval
» Textual corpus (Glasgow Harald, LA Times)
» English words & positions, PMI
» Monolingual Performance

Query Expansion MAP  GMAP  Wilcoxon Randomized
Baseline 0.4022  0.1805 - -
WSD WordNet 0.4070  0.1869 0.0119 0.0147
Co-occurrence Terms  0.4170  0.1864 0.0001 0.0196
» Crosslingual Performance
Query Expansion MAP  GMAP  Wilcoxon Randomized
Baseline 0.2885 0.0762 - -
WSD WordNet 0.2933  0.0773 0.2187 0.0056
Co-occurrence Terms  0.2917  0.0718 0.0090 0.0252
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Machine Translation

Crosslingual Plagiarism Detection

» Goal: Retrive word translation candidates to detect
crosslingual plagiarism

» Features: word alignment candidates
» Data-Structure: sentence aligned corpus (Europarl)

» Feature Function: HMM based word alignment algorithm
(BerkeleyAligner)
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Unsupervised Entity Disambiguation - 1/2

Word sense induction and discrimination

YR Knsw

Graz University of Techmology

» Goal: Identify the individual senses of an ambiguous word and

label unseen instance with one of them

» Features: Grammatical dependencies, (expanded) sentence

phrase terms
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advmod it-22 immediat..
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Unsupervised Entity Disambiguation - 2/2

Word sense induction and discrimination

» Sense induction:
» Extract local sub-graphs
» Cluster sub-graphs
» Generate new features out of existing features
» Senses are additional features in the feature association
network
» Sense discrimination:
» Distance based similarity search
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Results

Classification

Y Kn

Graz University of Technology

Domain Application Key Results Benefits
Tag Recommender Proof of concept Easy exchange of similarity func-
tion

Socil Web

Folksonomy Analysis Deeper understanding of Integration of additional features

folksonomies, Base for rec-
Socil Web
ommender systems

Query Translation Good translation perfor- Simple mapping of aligned doc-
o mance uments, Efficient lookup
Rotroval

Query Expansion Improved Performance Integration  of  task-specific
—— over baseline weighting function
Rotroval

Crosslingual Plagiarism De- Lookup runtime perfor- Integration into real-world sys-
Natural tection mance tems
Langusge
Processing

Word Sense Induction and State-of-the-art perfor- Integration of different features,
Mol Discrimination mance Integration of different algo-
anguage .
Processing rithms
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Conclusions Ty Knsw

Graz University of Technology

» Algorithmic approach

» Calculate feature associations
» Traverse feature association networks

» Goals

» Scalable
» Flexible
» Usable

» Applications

» Different domains related to knowledge discovery
» Real-world benefit
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The End Ty Knsw

Thank you!
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