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Anatomy of a Knowledge Discovery
Application

I Input: Data stored in repositories
I Structured vs. unstructured data
I Textual vs. multi-media content
I Single vs. multiple repositories

I Preprocessing of input into data-structures suitable for
algorithms

I Apply algorithms on data-structures

I Output: Visualize & store result

[Fayyad et al. 96]
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Feature Engineering

I Transform data into features
I Feature extraction: Words, Syntax, Statistics, ...
I Feature representation: Plain Text, Arrays, Matrix, Graph, ...

I Specific algorithms need specific data-structures
I High Level: Information Extraction, Classification, Clustering,

Information Retrieval, ...
I Low Level: SVD, EVD, SVM, HAC , BM25, LSA, LDA,

TFIDF , CRF , KNN, HMM, ...

I Example: Vector Space Model
I Input: Documents
I Features: Terms
I Data-structure: Matrix
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Feature Associations
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Relationships between features

I Additional transformation step

I Network of features

I Example: Term co-occurrences

Goal: Framework for feature associations

I Calculate feature associations

I Provide data-structure for feature associations
I Support feature engineering

I Feature analysis
I Feature synthesis

I Support application development
I Common data-structure for algorithms from various domains
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Algorithmic Issues

How to represent different features?

I Associations between features of different types
I More features could lead to better results

I Example: String kernels for classification

I But: More features definitely lead to more expensive
computation

How to integrate external knowledge?

I WordNet, ConceptNet, Linked Data, LDAP, ...

How to calculate the association weight?

I Correlation, statistical tests, probabilities, ...
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Practical Issues

How to deal with data that does not fit into main memory?

I Enterprise scale

I Example: English Wikipedia: 107 documents, 106 terms

How to integrate (exploit) heuristics?

I Strong (naive) independence assumption, Zipf’s law, Heaps’
law, small world networks, distributional hypothesis, ...

Copyright by Victor Grishchenko, LGPL,
http://en.wikipedia.org/wiki/File:Wikipedia-n-zipf.png 7 / 24
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Approach - Overview

Feature association framework

I Calculate feature associations
I Input: Extracted features in graph-like structures
I Output: Feature network

I Access feature associations
I Traverse feature network

Solves algorithmic and practical issues

I Provides an scalable algorithmic approach for large scale
datasets

I Flexible to allow the integration of rich set of features and
external sources

I Allows the integration of a range of graph operations to build
the association network
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Approach - Generalizations

Starting Point

I Vector Space Model: Inverted Index

I Simple feature representation: MatrixDocuments×Terms

I Simple feature operations: cossim(row(M, i), row(M, j))

Generalize Feature Representation

I Generalization of the simple matrix model

I Allows integration of additional information, e.g. term
positions, external sources, linguistic annotations, ...

Generalize Feature Operations

I Generalization of the operations on the features

I Allows integration of algorithms, e.g. Levenshtein edit
distance, SVD, clustering, ...
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Generalize Feature Representation

Feature Data-Structure

I Matrix can be transformed into a bi-partite graph
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I Bi-partite graph can be generalized to a n-partite graph

  Documents
  Terms
  Metadata
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Generalize Feature Operations

Matrix Feature Function

I Matrix multiplication

Mn,n = Mm,n ×MT
m,n

I General matrix transformation

Mn′,m′ = f (Mm,n,M
T
m,n)

I Simple Example - Matrix transposition

Mn,m = MT
m,n

Not only for matrices, but graphs too.
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Feature Operation Functions

I Feature association function - f (i , j)

f (nodei , nodej) = wglobal(a(nodei , nodej),G)

a(nodei , nodej) = waggregate({wcombine(l(i), l(j))})

l(nodex) = wlocal(nodex ,L)

I Input variables
I Local - L: word-forms, position, term frequency, document

length, ...
I Global - G: document frequency, dispersion, co-occurrence

count, average document length, ...

I Examples
I Cosine Similarity, Jaccard, Windowed Co-Occurrence, Poisson,

Pascal, Binomial, PMI, Conditional Probability, Conditional
Entropy, Mutual Information, χ2, Log Odds, ...
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Properties

Runtime Complexity

I Runtime complexity of O(n2 ∗m)

I Wikipedia: 1019 Operations

Algorithm

I Number of heuristics to keep computation feasible
I Expects power law
I Expects globally sparse, but locally highly connected

I Execution can be done in parallel

I Map-Reduce friendly
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Implementation

I Implementation tailored towards contemporary computer
architecture: Memory Access � Disk Access

I CPU & IO bound
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Tag Recommender - Tagr (SASU)

I Item based tag recommender system
I Input data: Folksonomy (Flickr subset)
I Features: Tags, Photos
I Data-Structure: Bipartite Graph (Matrix)
I Feature function: wi,j =

sharedPhotosi,j
mean(photoCounti ,photoCountj )

I Feature association retrieval: Lookup

Recommending tags for pictures based on text, visual content and user context.
Lindstaedt, Pammer, Moerzinger, Kern, Mülner, and Wagner [2008]
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Folksonomy Analysis

I Statistical Analysis of a Folksonomy
I Input data: Folksonomy (Flickr subset) stored in SQL-database
I Features: Tags, Photos, Users, Title, Description and

Comments
I Data-Structure: N-Bipartite Graph
I Feature function: Cosine
I Feature association retrieval: Spreading Activation, Distance

Extending Folksonomies for Image Tagging.
Kern, Granitzer, and Pammer [2008]
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Machine Translation

I Word alignment for query translation

I Input data: multilingual corpus
(Wikipedia, Europarl)

I Features: English words, Spanish
words

I Data-Structure: article aligned
corpus, 3-partite graph

I Feature function: Cosine,
Correlation, TFIDF

I Feature association retrieval:
Spreading Activation
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Crosslanguage Retrieval based on Wikipedia Statistics.
Juffinger, Kern, and Granitzer [2008a]
Exploiting Cooccurrence on Corpus and Document Level for Fair Crosslanguage
Retrieval. Juffinger, Kern, and Granitzer [2008b]
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Information Retrieval

I Global query expansion for cross-lingual information retrieval
I Textual corpus (Glasgow Harald, LA Times)
I English words & positions, PMI
I Monolingual Performance

Query Expansion MAP GMAP Wilcoxon Randomized
Baseline 0.4022 0.1805 - -
WSD WordNet 0.4070 0.1869 0.0119 0.0147
Co-occurrence Terms 0.4170 0.1864 0.0001 0.0196

I Crosslingual Performance
Query Expansion MAP GMAP Wilcoxon Randomized
Baseline 0.2885 0.0762 - -
WSD WordNet 0.2933 0.0773 0.2187 0.0056
Co-occurrence Terms 0.2917 0.0718 0.0090 0.0252

Application of Axiomatic Approaches to Crosslanguage Retrieval.
Kern, Juffinger, and Granitzer [2009a]
Evaluation of Axiomatic Approaches to Crosslanguage Retrieval.
Kern, Juffinger, and Granitzer [2009b]
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Machine Translation

Crosslingual Plagiarism Detection

I Goal: Retrive word translation candidates to detect
crosslingual plagiarism

I Features: word alignment candidates

I Data-Structure: sentence aligned corpus (Europarl)

I Feature Function: HMM based word alignment algorithm
(BerkeleyAligner)

External and Intrinsic Plagiarism Detection using a Cross-Lingual Retrieval and
Segmentation System
Muhr, Kern, Zechner, and Granitzer [2010]
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Unsupervised Entity Disambiguation - 1/2

Word sense induction and discrimination

I Goal: Identify the individual senses of an ambiguous word and
label unseen instance with one of them

I Features: Grammatical dependencies, (expanded) sentence
phrase terms
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Unsupervised Entity Disambiguation - 2/2

Word sense induction and discrimination

I Sense induction:
I Extract local sub-graphs
I Cluster sub-graphs
I Generate new features out of existing features
I Senses are additional features in the feature association

network

I Sense discrimination:
I Distance based similarity search

KCDC: Word Sense Induction by Using Grammatical Dependencies and Sentence
Phrase Structure. Kern, Muhr, and Granitzer [2010]
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Results

Classification

Domain Application Key Results Benefits

Social Web

Tag Recommender Proof of concept Easy exchange of similarity func-
tion

Social Web

Folksonomy Analysis Deeper understanding of
folksonomies, Base for rec-
ommender systems

Integration of additional features

Information
Retrieval

Query Translation Good translation perfor-
mance

Simple mapping of aligned doc-
uments, Efficient lookup

Information
Retrieval

Query Expansion Improved Performance
over baseline

Integration of task-specific
weighting function

Natural
Language
Processing

Crosslingual Plagiarism De-
tection

Lookup runtime perfor-
mance

Integration into real-world sys-
tems

Natural
Language
Processing

Word Sense Induction and
Discrimination

State-of-the-art perfor-
mance

Integration of different features,
Integration of different algo-
rithms
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Conclusions

I Algorithmic approach
I Calculate feature associations
I Traverse feature association networks

I Goals
I Scalable
I Flexible
I Usable

I Applications
I Different domains related to knowledge discovery
I Real-world benefit
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The End

Thank you!
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