Insights into Cluster Labeling

Dennis Hoppe Web Technology and Information Systems Bauhaus-Universität Weimar

Application: Web Search Result Clustering

Application: Web Search Result Clustering

search.carrotsearch.com

Outline

- Formalization of Cluster Labels
- Evaluation of Cluster Labels
- Paradigms of Cluster Labeling

Problem Statement

 $\textbf{Clustering} \ \mathcal{C}$

Cluster Label $l \in \mathcal{L}$: antibiotics, disease, infection, bacteria, drug

Formalization of Cluster Labels

What accounts for "good" cluster labels?

- □ Comprehensibility
- Descriptiveness
- Discriminative power
- □ Uniqueness
- Non-redundancy
- Minimal Overlap
- Hierarchically consistency

The formalization is based on previous work done in [8].

(a) Formalization of Cluster Labels: Comprehensibility (f_1)

Informal:

A reader should have a *clear imagination* of the contents of a cluster.

Formal:

 $\forall c \in \mathcal{C} \; \forall p \in l_c : p \in L(G) \land |p| > 1$

where l_c is the cluster label of cluster c, p a phrase of l_c , and L(G) determines a formal language identifying noun phrases.

(a) Formalization of Cluster Labels: Comprehensibility (f_1)

Informal:

A reader should have a *clear imagination* of the contents of a cluster.

Formal:

 $\forall c \in \mathcal{C} \; \forall p \in l_c : p \in L(G) \land |p| > 1$

where l_c is the cluster label of cluster c, p a phrase of l_c , and L(G) determines a formal language identifying noun phrases.

Why select noun phrases as comprehensible cluster labels?

- □ Single terms [8] suffer from a loss of information.
- □ Named Entities [2, 9, 3] are too strict.
- □ Titles of web pages [5] are not always available.
- □ Frequent phrases [11] are often grammatically incorrect or meaningless.

(a) Formalization of Cluster Labels: Comprehensibility (f_1)

Criterion:

$$f_1(p) = \mathsf{NP}(p) \cdot \mathsf{penalty}(p)$$

where

$$\begin{split} \mathsf{NP}(p) &= \begin{cases} 1 & \text{, if } p \in L(G) \\ 0 & \text{, otherwise} \end{cases} \\ \mathsf{penalty}(p) &= \begin{cases} \exp \frac{-(|p| - |p|_\mathsf{opt})^2}{2 \cdot d^2} & \text{, if } |p| > 1 \\ 0.5 & \text{, otherwise} \end{cases} \end{split}$$

Note that the exponential expression was earlier used in [10] to penalize too short or too long phrases. [10] set $|p|_{opt} = 4$ and d = 8.

(b) Formalization of Cluster Labels: Descriptiveness (f_2)

Informal:

Every document of a cluster should contain the associated cluster label.

Formal:

$$\forall c \in \mathcal{C} \exists p \in l_c \; \forall p' \in P_c : \; \mathbf{df_c}(p') \ll \mathbf{df_c}(p)$$

where P_c is the set of phrases in the cluster c.

Criterion:

$$f_2(c,p) = 1 - \frac{1}{|P_c \setminus l_c|} \sum_{\substack{p' \in P_c \\ p' \notin l_c}} \frac{\mathbf{df_c}(p')}{\mathbf{df_c}(p)}$$

(c) Formalization of Cluster Labels: Discriminative Power (f_3)

Informal:

A cluster label should only be present in documents of its own cluster.

Formal:

$$\forall c_i, c_j \in \mathcal{C} \; \exists p \in l_c \, : \, \frac{\textit{df}_{\textit{c}_i}(p)}{|c_i|} \ll \frac{\textit{df}_{\textit{c}_j}(p)}{|c_j|}$$

Criterion:

$$f_3(c_j, p) = 1 - \frac{1}{k - 1} \sum_{\substack{c_i \in \mathcal{C} \\ c_i \neq c_j}} \frac{|c_j| \cdot df_{c_i}(p)}{|c_i| \cdot df_{c_j}(p)}$$

(e) Formalization of Cluster Labels: Uniqueness (f_4)

Informal:

Cluster labels should be unique.

Formal:

$$\forall c_i, c_j \in \mathcal{C} : l_{c_i} \cap l_{c_j} = \emptyset$$

Criterion:

$$f_4(c_j, p) = 1 - \frac{1}{k - 1} \sum_{\substack{c_i \in \mathcal{C} \\ c_i \neq c_j}} \frac{|p \cap l_{c_i}|}{|p \cup l_{c_j}|}$$

(f) Formalization of Cluster Labels: Non-redundancy (f_5)

Informal:

Cluster labels should not be synonymous.

Formal:

$$\forall c \in \mathcal{C} \; \forall p, p' \in l_c \; : \; p \text{ and } p' \text{ are not synonymous}$$

Criterion:

$$f_5(c,p) = 1 - \frac{1}{|l_c| - 1} \sum_{\substack{p' \in l_c \\ p' \neq p}} \operatorname{syn}(p,p')$$

where syn : $p \times p \mapsto \{0, 1\}$.

Relevance of a phrase with respect to a cluster

All constraints can be combined into a single criterion:

$$\textit{rel}(c,p) = \sum_{i=1}^{|\mathcal{F}|} \omega_i \cdot f_i(c,p)$$

where ω_i is a weighting factor and $\mathcal{F} = \{f | 1 \dots 5\}$, namely,

- f_1 Comprehensibility
- f_2 Descriptiveness
- f_3 Discriminative Power
- f_4 Uniqueness
- f_5 Non-redundancy

Note, that the effect of every constraint on the quality of a phrase is so far unevaluated.

Cluster Labeling [1]

Do these constraints really select good phrases as cluster labels?

Category	Top 5 Phrases	Worst 5 Phrases	
Antibiotics	used Antibiotics	Technology	
	other Antibiotics	queries	
	Antibiotics Health	project	
	Antibiotics Antibiotics	Print	
	Antibiotics Work	time	
Psycho (Movie)	Psycho	User	
	Bates Motel Norman	TOPIC	
	Marion Crane Janet Leigh	mail	
	shower scene Hitchcock	list	
	Martin Balsam	release	

Evaluation of Cluster Labels

- External Evaluation
- Internal Evaluation
- User Studies

External Evaluation

External Evaluation Measures

- □ Precision@N
- Match@N
- Mean Reciprocal Rank (MRR)

External Evaluation: Human Experts

Firefox T	
P Open Directory - Search Results	
dmoz open directory project	Ê
home [feedbac]	2
Search: antibiotics	
Open Directory Categories (1-5 of 100)	
1. Health: Pharmacy: Drugs and Medications: Antibiotics: Resistance Issues (12)	
2. Health: Pharmacy: Drugs and Medications: Antibiotics (10)	
3. Business: Biotechnology and Pharmaceuticals: Pharmaceuticals: Manufacturing (13)	
4. <u>Health: Animal: Drugs and Medications</u> (7)	
5. Shopping: Food: Meat: Beef: Natural and Organic (7)	
more	
Open Directory Sites (1-20 of 208)	
1. Where Are My Antibiotics? - A discussion of antibiotic overuse, resistance, and why you don't need an antibiotic every time that you get sick.	
http://pediatrics.about.com/library/ask/blask_100702.htm <u>Health: Pharmacy: Drugs and Medications: Antibiotics (10)</u>	
2. What the Heck is an Antibiotic? - John C. Brown provides an expanded definition for antibiotics.	
http://people.ku.edu/-jbrown/antibiotic.html <u>Health: Pharmacy: Drugs and Medications: Antibiotics (10)</u>	
3. Antibiotic Guide - This guide from Johns Hopkins University provides current information about using antibiotics for the diagnosis and treatment of infectious diseases	-

External Evaluation

Limitations

- □ Binary judgment about the relevance of a phrase is too strict.
- Used ranked-based measures are not sensitive regarding the order of phrases in a cluster label

External Evaluation

Limitations

- □ Binary judgment about the relevance of a phrase is too strict.
- Used ranked-based measures are not sensitive regarding the order of phrases in a cluster label

Given a cluster about antibiotics; the reference label is "Antibiotics", too. Cluster Label Examples:

- a) Web site, Technology, Infections, Antibiotics
- b) Antibiotics, Infections, Web site, Technology

NDCG-Based External Measure

Normalized Discounted Cumulative Gain (NDCG)

Relevance	Definition
Level	
0	No match
1	Partial match
2	Exact match

$$DCG@N = \sum_{i=1}^{N} \frac{2^{rel_i} - 1}{\log_2(1+i)}$$

External Evaluation: Vocabulary Problem

People have a "tremendous diversity in the words" they use "to describe the same object", and therefore systems may fail to answer the user's information needs [4].

Thus, one cannot expect that a selected reference label is the *only correct description for* a cluster.

Example

Given a cluster about antibiotics; the reference label is "Antibiotics", too.

Is "Penicillin" really a poor label?	No match!
Is "Antimicrobial compound" really a poor label?	No match!
Is "Bactericidal Agents" really a poor label?	No match!
Is "Substance that kills bacteria" really a poor label?	No match!

Cluster Labeling [1]

Internal Evaluation

Based on the relevance of a phrase, $rel(c, p) = \sum_{i=1}^{|\mathcal{F}|} \omega_i \cdot f_i(c, p)$, we can associate a quality value to each phrase.

Normalized Discounted Cumulative Gain (NDCG)

$$DCG@N = \sum_{i=1}^{N} \frac{2^{rel_i} - 1}{\log_2(1+i)}$$

Ν	Phrase	rel_i
1	Infections	4
2	Web site	1
3	Technology	0
4	Antibiotics	5
	NDCG@4	0.27

Ν	Phrase	rel_i	
1	Antibiotics	5	
2	Infections	4	
3	Technology	0	
4	Web site	1	
	NDCG@4	0.45	

Paradigms of Cluster Labeling [1]

- Data-Centric Algorithms
- Description-Centric Algorithms
- Description-Aware Algorithms

Data-Centric Algorithms

□ Frequent Predictive Words (FPW) [7]

- Weighted Centroid Covering
- □ Scatter/Gather
- Tolerance Rough Set Clustering (TRSC)
- □ WebCAT
- 🗅 Lassi

Frequent Predictive Words

Terms t are selected as cluster label from the cluster's centroid if they are

- □ very *frequent* within the cluster, and
- □ represent the cluster strongest (*predictive*).

Feature evaluation

$$f_c(t) = tf_c(t) \cdot \frac{tf_c(t)}{ctf}$$

Description-Aware Algorithms

□ Suffix Tree Clustering (STC) [11]

Suffix Tree Clustering (STC)

Suffix Tree Clustering (STC)

Description-Centric Algorithms

- □ Descriptive *k*-Means (DKM) [10]
- □ Lingo
- □ SRC

DisCover

Descriptive *k*-Means

(1) Documents in vector space

(2b) Clustering: centroids represent topics

(3) Feature evaluation. Phrases close to centroids become cluster label

(4) Monothetic clustering. Cluster label used as features

Cluster Labeling [1]

Paradigms of Cluster Labeling: Examples

Category	Paradigm	Cluster Labels
MySQL	FPW	excel, jeremy, demo, authentic, forum
	STC	MySQL, Open Source Database, News, Search
	DKM	SQL Server, MySQL database server
PostgreSQL	FPW	hat, document, project, string, release
	STC	Support, Contact, Open Source, Search
	DKM	PostgreSQL database system, PostgreSQLServer
Antibiotics	FPW	antibiotics, disease, infection, bacteria, drug
	STC	Skip, Navigation, News, Search
	DKM	Antibiotic Resistant Bacteria

Experiments

Data set

- Open Directory Project (ODP)
- \square 5 selected categories (\approx 250 documents)
- Example: Movies of Stanley Kubrick and Alfred Hitchcock

Evaluation

- Each criterion was evaluated separately
- NDCG-based internal measure
- □ Precision@N, Match@N

Results

Paradigm	f_1	f_2	f_3	f_4	f_5
Keyphrase Extraction	0.79	0.66	0.37	0.94	0.99
Data-Centric Algorithms	0.39	0.59	0.63	0.97	1.00
Description-Aware Algorithms	0.73	0.70	0.89	1.00	0.99
Description-Centric Algorithms	0.91	0.64	0.91	1.00	1.00

- f_1 Comprehensibility
- f_2 Descriptiveness

- f_5 Uniqueness
- f_6 Non-redundancy

 f_3 Discriminative Power

For example, comprehensibility:

$$f_{1|\text{all}}(\mathcal{L}) = \frac{1}{k} \sum_{c \in \mathcal{C}} \frac{1}{|l_c|} \sum_{p \in l_c} \text{NP}(p) \cdot \text{penalty}(p)$$

Cluster Labeling [1]

Results

- □ Using noun phrases yields to a better label quality.
- □ Using a reference clustering improves the label quality, too.
- Simple keyphrase-extraction techniques are competitive with data-centric algorithms.
- Description-centric algorithms achieve the best results.

Cluster Labeling [1]

Recap and Outlook

Recap

- □ Formalization of Cluster Label Properties
- Evaluation of Cluster Labels
- Paradigms of Cluster Labeling

Outlook

- □ Evaluate the effect of each cluster label contraint on the quality of a label.
- Considering new keyphrase extraction methods in addition to noun phrases and frequent phrases.

Bibliography

- [1] C. Carpineto, S. Osiński, G. Romano, D. Weiss. A Survey of Web Clustering Engines. *ACM Computing Surveys (CSUR)*, 41(3):Article 17, 2009.
- [2] C. Clifton, R. Cooley, and J. Rennie. TopCat: Data Mining for Topic Identification in a Text Corpus. *IEEE Trans. Knowl. Data Eng.*, 16(8):949–964, 2004.
- [3] W. de Winter and M. de Rijke. Identifying Facets in Query-Biased Sets of Blog Posts. In *Proceedings of ICWSM 2007*, pages 251–254.
- [4] S.T. Dumais, G.W. Furnas, T.K. Landauer, S. Deerwester, and R. Harshman. Using Latent Semantic Analysis to Improve Access to Textual Information. In *Proceedings of CHI 1988*, pages 281–285.
- [5] F. Geraci, M. Pellegrini, M. Maggini, and F. Sebastiani. Cluster Generation and Cluster Labelling for Web Snippets: A Fast and Accurate Hierarchical Solution. In *Proceedings of SPIRE 2006*, pages 25–36.
- [6] S. Osiński, J. Stefanowski, and D. Weiss. Lingo: Search Results Clustering Algorithm Based on Singular Value Decomposition. In *Proceedings of IIPWM 2004*, pages 359–368.
- [7] A. Popescul and L.H. Ungar. "Automatic labeling of document clusters". http://www.cis.upenn.edu/~popescul/Publications/popescul00labeling.pdf, 2000.
- [8] B. Stein and S. Meyer zu Eißen. Topic Identification: Framework and Application. In *Proceedings of I-Know 2004*, pages 353–360.
- [9] H. Toda and R. Kataoka. A Clustering Method for News Articles Retrieval System. In *Proceedings of WWW 2005*, pages 988–989.
- [10] D. Weiss. "Descriptive clustering as a method for exploring text collections". Ph.D. dissertation. Poznań University of Technology, Poland, 2006.
- [11] O. Zamir and O. Etzioni. Grouper: A dynamic Clustering Interface to Web Search Results. In *Proceedings of WWW 1999*, pages 1361–1374.