Drug-Drug Interaction Detection: A New Approach Based on Maximal Frequent Sequences

Sandra García-Blasco Roxana Danger Paolo Rosso

Natural Language Enginnering Lab. - ELiRF DSIC - Univ. Politécnica Valencia sangarbl@posgrado.upv.es {rdanger,prosso}@dsic.upv.es

BioSEPLN, September 2010

イロト イポト イヨト イヨト

Outline

Introduction

- The problem: Drug-Drug Interaction Detection
- Approximations
- 2 Out Proposal
 - Method Proposed
 - The Algorithm
- 3 Experimentation
 - Corpus and preprocessing
 - Results

★ Ξ → ★ Ξ →

The problem: Drug-Drug Interaction Detection Approximations

イロト イポト イヨト イヨト

э

Outline

Introduction

• The problem: Drug-Drug Interaction Detection

- Approximations
- 2 Out Proposal
 - Method Proposed
 - The Algorithm
- 3 Experimentation
 - Corpus and preprocessing
 - Results

Conclusions

The problem: Drug-Drug Interaction Detection Approximations

ヘロト ヘアト ヘビト ヘビト

- A drug-drug interaction (DDI) occurs when the effects of a drug are modified by the presence of other drugs.
- Its consequences may be very harmful for the patient's health and could even cause his dead.
- This gives us an idea of how important is for health-care professionals to keep their databases up-to-date with new DDI.

The problem: Drug-Drug Interaction Detection Approximations

ヘロト 人間 ト ヘヨト ヘヨト

- A drug-drug interaction (DDI) occurs when the effects of a drug are modified by the presence of other drugs.
- Its consequences may be very harmful for the patient's health and could even cause his dead.
- This gives us an idea of how important is for health-care professionals to keep their databases up-to-date with new DDI.

The problem: Drug-Drug Interaction Detection Approximations

ヘロト 人間 ト ヘヨト ヘヨト

- Most of the new discoveries in DDI are published in bibliographic databases on health and biomedicine, like MEDLINE:
 - MEDLINE has over 18 million references to journal articles
 - In 2009, over 712.000 articles added.
- This growing amount of information leaves very clear how necessary is to find efficient methods that help health-care professionals to better deal with all this information.

The problem: Drug-Drug Interaction Detection Approximations

ヘロト 人間 ト ヘヨト ヘヨト

- Most of the new discoveries in DDI are published in bibliographic databases on health and biomedicine, like MEDLINE:
 - MEDLINE has over 18 million references to journal articles
 - In 2009, over 712.000 articles added.
- This growing amount of information leaves very clear how necessary is to find efficient methods that help health-care professionals to better deal with all this information.

The problem: Drug-Drug Interaction Detection Approximations

イロト イポト イヨト イヨト

э

Outline

Introduction

- The problem: Drug-Drug Interaction Detection
- Approximations
- 2 Out Proposal
 - Method Proposed
 - The Algorithm
- 3 Experimentation
 - Corpus and preprocessing
 - Results

Conclusions

The problem: Drug-Drug Interaction Detection Approximations

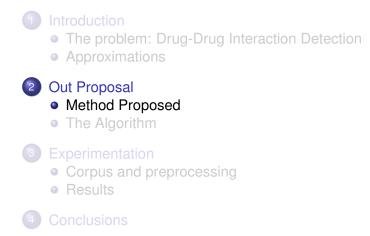
ヘロン 人間 とくほ とくほ とう

Approximations of other authors

In (Segura-Bedmar, 2010) two different techniques for DDI detection are presented:

- A hybrid approach, combining shallow parsing and pattern matching. The patterns used in this technique were described by a pharmacist, and they obtained 48.7% precision, and 25.7% recall.
- An approach based on a supervised machine learning approach, specifically kernel methods, obtaining 55% precision and 84% recall.

Method Proposec The Algorithm


Our proposal

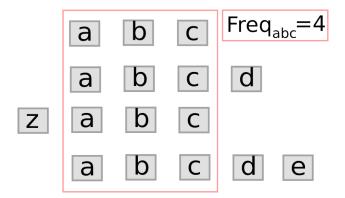
- Objective: Automatically determining the patterns that identify DDI from a set of documents.
- Our hypothesis holds that there must be patterns that we will find repeated if we look thought a large amount of biomedical texts, and those patterns will help to identify new drug drug interactions.
- The method proposed in this paper is language and domain independent.

ヘロト ヘ戸ト ヘヨト ヘヨト

Method Proposed The Algorithm

Outline

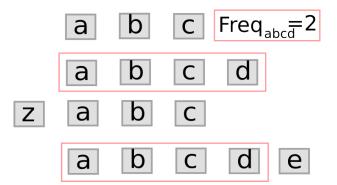
イロト イポト イヨト イヨト


Method Proposed The Algorithm

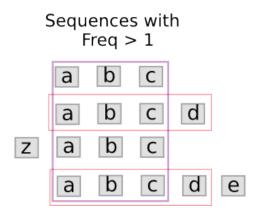
Maximal Frequent Sequences

- A sequence is an ordered list of elements, i.e. words.
- The frequency of a sequence is the number of times that the sequence appears.
- A sequence will be β-frequent if it is included in β sentences
- A sequence *R* is subsequence of a sequence *T* if all the elements of *R* appear in *T* in the same order. For example:
 - If *R* =< *abcde* > and *T* =< *bcd* > then, *T* is subsequence of *R*
- A maximal sequence is a sequence that is not a subsequence of any other.

ヘロト 人間 ト ヘヨト ヘヨト


Method Proposed The Algorithm

ヘロト 人間 とくほとくほとう


₹ 990

Method Proposed The Algorithm

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Method Proposed The Algorithm

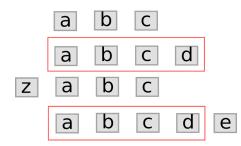
García-Blasco, Danger, Rosso DDI Detection: A New Approach Based on MFS

イロン イロン イヨン イヨン

æ

Method Proposed The Algorithm

Maximal Frequent Sequences


Definition

Maximal Frequent Sequences (MFS) will be all the sequences that are frequent and that are not subsequence of any other.

ヘロト ヘ戸ト ヘヨト ヘヨト

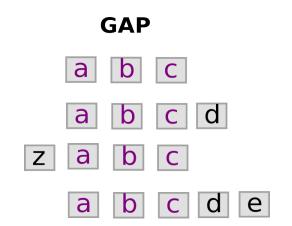
Method Proposed The Algorithm

Maximal Sequences with Freq > 1

García-Blasco, Danger, Rosso DDI Detection: A New Approach Based on MFS

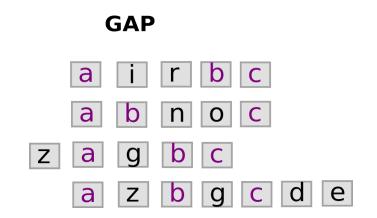
イロン イロン イヨン イヨン

ъ


Method Proposed The Algorithm

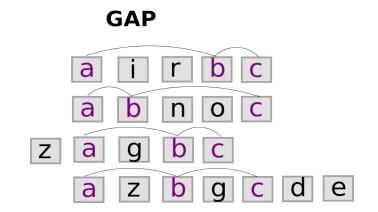
- In order to make this maximal frequent sequences more flexible, the concept of gap is introduced (Garcia-Hernandez, 2007)
- The gap is the maximum distance that is allowed between two words of a MFS. With a gap = 0, the words in the MFS will be adjacent words in the original text.

イロト イポト イヨト イヨト


Method Proposed The Algorithm

García-Blasco, Danger, Rosso DDI Detection: A New Approach Based on MFS

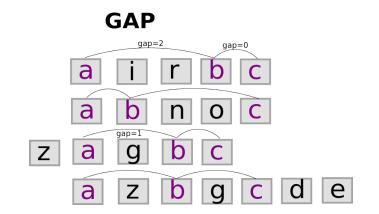
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●


Method Proposed The Algorithm

García-Blasco, Danger, Rosso DDI Detection: A New Approach Based on MFS

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Method Proposed The Algorithm

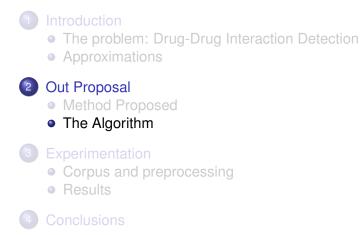


García-Blasco, Danger, Rosso DDI Detection: A New Approach Based on MFS

ヘロト 人間 とくほとくほとう

₹ 990

Method Proposed The Algorithm


García-Blasco, Danger, Rosso DDI Detection: A New Approach Based on MFS

ヘロト 人間 とくほとくほとう

₹ 990

Method Proposed The Algorithm

Outline

(本間) (本語) (本語)

Method Proposed The Algorithm

The Algorithm

- The algorithm presented is based on the *Apriori Algorithm* (Agrawal and Srikant, 1994), but with the difference that our algorithm takes into account the sequentiality of the elements, i.e. words, allowing gaps between them.
- The algorithm can be divided into 3 stages:
 - Getting bag of words
 - Pinding candidates
 - Merging Patterns

・ 回 ト ・ ヨ ト ・ ヨ ト

Method Proposed The Algorithm

The algorithm

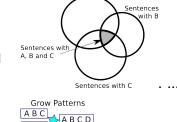
• The algorithm has three parameters:

minFreq minimum number of sentences where the *MFS* should appear.

minLength minimum length of the MFS.

gap maximum distance allowed between two words of the *MFS*.

くロト (過) (目) (日)

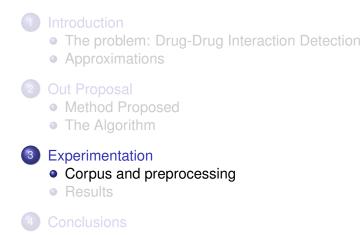

æ

Method Proposed The Algorithm

The Algorithm - An overview

Input: minFreq, minLength, gap

- Build a Bag of Words with the frequent words
- Ocmbinations of length 3 of frequent words
- Isor each combination:
 - If size(intersection) < minFreq, discard
- Permute combinations
- For each permutation:
 - If #sent with perm in right order < minFreq, discard
 - Grow Patterns to make them Maximal
 - Remove patterns with length < minLength


(E) < E)</p>

Sentences with A

ВСГ

Corpus and preprocessing Results

Outline

イロト イポト イヨト イヨト

э

Corpus and preprocessing Results

Corpus

- The **DrugDDI** corpus (Segura-Bedmar, 2010) is a drug-drug interaction corpus annotated with linguistic information, named entities and drug interactions.
- Drugs are tagged in the corpus, according to their type. There are 6 types:
 - Clinical drug (clnd)
 - Pharmacological Substance (phsu)
 - Antibiotic (antb)
 - Biologically Active Substance (bacs)
 - Chemical viewed structurally (chvs)
 - Amino acid, Peptide or Protein (aapp)

ヘロト ヘ戸ト ヘヨト ヘヨト

Corpus and preprocessing Results

- The corpus consists of 579 documents from the DrugBank database, with an average of 10.3 sentences and 5.46 interactions per document.
- The corpus has been divided into two sets:

Training with 446 documents. Test with 133 documents.

ヘロン 人間 とくほ とくほ とう

3

Corpus and preprocessing Results

Preprocess

Three different versions of the corpus were obtained

Normal Original Text

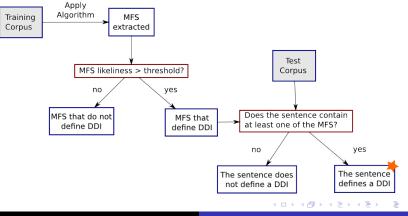
• Acetazolamida may increase the effects of other folic acid antagonists

6Drug Each drug name was substituted by its type

• phsu may increase the effects of other phsu

#Drug# Each drug name was substituted by #drug#

#drug# may increase the effects of other #drug#


ヘロト 人間 ト ヘヨト ヘヨト

æ

Corpus and preprocessing Results

Experiments

Objective Identify drug drug interactions in biomedical texts using *maximal frequent sequences*.

García-Blasco, Danger, Rosso DDI Detection: A New Approach Based on MFS

Corpus and preprocessing Results

Experiments

• First, the algorithm is used to extract **MFS** from the training set using the following configurations:

```
minLength 4
minFreq 10, 15, 20
gap 0, 1, 2
```

• Each experiment was repeated for each one of the 3 versions of the corpus: *norm*, 6*drugs*, #*drug*#.

ヘロト ヘアト ヘビト ヘビト

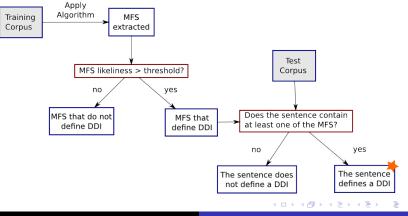
1

Corpus and preprocessing Results

Experiments

 Next, the MFS detected where rated using a new function that we define, likeliness, that is the probability of the MFS to describe a DDI. Likeliness is defined as:

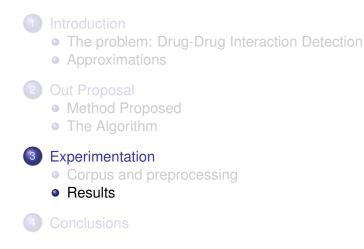
$$likeliness(MFS_i) = \frac{\text{times } MFS_i \text{ identifies DDI}}{\text{times } MFS_i \text{ appears}}$$


ヘロト 人間 ト ヘヨト ヘヨト

æ

Corpus and preprocessing Results

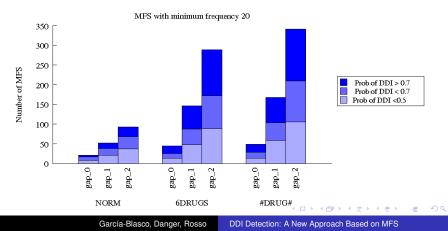
Experiments


Objective Identify drug drug interactions in biomedical texts using *maximal frequent sequences*.

García-Blasco, Danger, Rosso DDI Detection: A New Approach Based on MFS

Corpus and preprocessing Results

Outline


ヘロト ヘワト ヘビト ヘビト

э

Corpus and preprocessing Results

Results

 The algorithm has detected maximal frequent sequences that describe drug-drug interaction.

Corpus and preprocessing Results

Results

Example (MFS)

('#*drug*#', '**may**', '**the**', '**effects**', '**o**f', '#*drug*#') Extracted from sentences like:

- Acetazolamide may increase the effects of other folic acid antagonists
- Alcohol may potentiate the side effects of bromocriptine mesylate
- Dopamine D2 receptor antagonists (e.g., phenothiazines, butyrophenones, risperidone) and isoniazid may reduce the therapeutic effects of levodopa
- Concomitant administration of other sympathomimetic agents **may** potentiate **the** undesirable **effects of** FORADIL

Using #drug#, minFreq = 10 and gap = 1

くロト (過) (目) (日)

э

Corpus and preprocessing Results

Examples of the MFS extracted

MFS description	Sample		likeliness
	('#drug#', 'may', 'increase', 'of')		0.93
	('may', 'decrease', 'the', 'of')	21	0.90
With verbs denoting effects	('#drug#', 'may', 'enhance', 'the', 'of')	10	1.0
	('#drug#', 'is', 'administered', 'with')	21	0.81
	('#drug#', 'may', 'the', 'effects', '#drug#')	13	1.0
With 2 or more drugs	('#drug#', 'should', 'not', 'be', 'with', '#drug#')	11	1.0
	('#drug#', 'reduce', 'the', 'of', '#drug#')	15	0.93

García-Blasco, Danger, Rosso DDI Detection: A New Approach Based on MFS

イロン 不同 とくほ とくほ とう

Corpus and preprocessing Results

Results

To calculate the performance of the method the measures of precision, recall and F_i -measure are used.

- Precision is defined as the number of sentences describing DDI retrieved divided by the total number of sentences retrieved.
 - Recall is defined as the number of sentences describing DDI retrieved divided by the total number of existing sentences describing DDI.

 F_1 -measure is the harmonic mean of precision and recall.

ヘロト ヘアト ヘビト ヘビト

Corpus and preprocessing Results

Results

• The baseline is the one given by tagging all the sentences as DDI.

	Precision	Recall	F_1
baseline	0.40	1	0.28
norm	0.68	0.41	0.51
6drugs	0.48	0.93	0.63
#drug#	0.46	0.95	0.62

Table: Comparison of Results

• As the table shows, some of the parameters give a very high recall value (95%).

イロト イポト イヨト イヨト

Conclusions I

- DDIs are described by the researchers using a reduced vocabulary and similar sentences structures are used to describe drug-drug interactions.
- Maximal Frequent Sequences are able to extract repeated patterns and has been proved to be a good method for drug-drug interaction detection.
- The method proposed is domain and language independent, and can be applied in many other tasks, like Protein-Protein or Protein-Drug Interaction detection.
- This method does not require any domain specific knowledge, extracting the patterns directly from a sample corpus.

ヘロト ヘアト ヘビト ヘビト

Thank you.

García-Blasco, Danger, Rosso DDI Detection: A New Approach Based on MFS

イロン イロン イヨン イヨン

References I

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in large databases.

In VLDB, pages 487–499, 1994.

Helena Ahonen-Myka.

Finding all maximal frequent sequences in text, 1999.

Helena Ahonen-Myka.

Discovery of frequent word sequences in text. In Proceedings of the ESF Exploratory Workshop on Pattern Detection and Discovery, pages 180–189, London, UK, 2002. Springer-Verlag.

くロト (過) (目) (日)

References II

- Rosa M. Coyotl-Morales, Luis Villaseñor-Pineda, Manuel Montes-y Gómez, and Paolo Rosso.
 Authorship attribution using word sequences.
 In LNCS, pages 844–853. Springer, 2006.
- René A. García.

Algoritmos para el descubrimiento de patrones secuenciales maximales.

PhD thesis, INAOE. Mexico, September 2007.

・ 同 ト ・ ヨ ト ・ ヨ ト

References III

Sandra García-Blasco.

Extracción de secuencias maximales de una colección de textos.

Final degree project, ETSInf, Universidad Politécnica de Valencia, Spain, December 2009.

Isabel Segura-Bedmar.

Application of Information Extraction techniques to pharmacological domain: Extracting drug-drug interactions.

PhD thesis, Universidad Carlos III, Madrid, Spain, April 2010.

ヘロト ヘアト ヘビト ヘビト