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Context & Disclaimer
• Industry-based project

• Co-operation with a modest-sized bank & Profinit EU (data analytics)

• General motivation: „get to know“ our clients better
• Increased revenues, detect potential problems, unwanted situations etc.

• Rather a fuzzy task without strict goals

• Work-in-progress (more questions than answers  )

• Traditional banking
• Relational data (clients, products, transactions)

• Standard analytics (SELECT/GROUP BY/FILTER), ML based on facts

• Some statistical task-specific analytics
• Mostly predictions in risk management (loan/mortgage business), fraud 

detection/prevention 

• Common ML techniques, simple features (demographics, risk classes, 
income, etc.)
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Motivation

•What can be done beyond traditional approaches?
• Go beyond explicit fact checking

• Model similarities of bank clients based on their behavior

• Construct some latent „social network“ based on clients’
similarities
• Social relations, locality relations, financial behavior patterns, etc. 

• No explicitly given task -> focus on new business cases

• Personalized marketing, insurance recommendation, investments, financial 
consultation, insolvency prevention, etc.

GOALS (bank’s point of view): 

- Offer appropriate financial products to relevant clients at the right time

- Predict & prevent unwanted situations (frauds, loan payment problems)

- Find new business models
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Motivation
• Kate just added travel insurance to her card

• William is similar to Kate w.r.t. expenses structure, withdrawn ATM’s 
countries and location patterns.
• Human readable explanation: they both travel but don’t like extreme sports

=> basic insurence will do. Also, maybe they’re a family?
• What about recommending travel insurance to William as well?
• Further confirmation: in past, recommendations along these axes 

worked well.

• Miloš did not received his salary last two months
• His expenses remain similar & he keeps withdrawing from „booze

ATMs“ cluster
• Human explanation: he lost his job, but he keeps drinking like hell

• What about offering him a loan?
• Maybe, not a good idea: 

• Miloš’s expenses structure & withdrawn ATM’s clusters are similar to 
how did Andrej behaved a year ago. Andrej received a loan, but failed 
to repay it.
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Data available

• Demographics
• Name, gender, age, address…

• Credit score, loan payment history, frauds…
• Some data anonymized / hashed for us

• Transactions
• Allow to model similarities

of clients based on various 
financial behavior profiles

• Rich attribute structure
• Temporal context 

• 3rd Party Data
• E.g. Real estate, business or criminal registers
• Legal concerns (however useful for manual verification)
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Latent social network model
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Latent social network model
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• Rule-based edge extractions
• Fact checking, e.g., family/relatives, co-workers

• Aggregated relations (e.g., mutual transactions -> business relations 
/ employers)

• Can be done with traditional approaches



Latent social network model
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• Similarity-based edge extractions
• Focus on client’s behavior

• Stream of transactions (possibly window-based aggregations)

• Amount, datetime, location, frequency, counterparty,  
transaction type, type of business (+ brand) etc.



Latent social network model
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•High-level latent social multigraph
• Relations among clients (aggregated from low-level edges)

• Client’s attributes (both factual and inferred)

• Time-aware edges, relation relevance score



Latent social network model
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•Low-level latent social multigraph
• Decomposed relations over other node types (locations, institutions etc.)

• E.g. Person1-Colleague-Person2 -> 
Person1 – works_at – Institution & Person2 – works_at - Institution

• Finer grained relationship mining



Latent social network model
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• SIMILANT
• Analytic tool to evaluate similarity descriptors

• Which descriptors are meaningful? What pre/post-processing? What 
similarity metric?

• Clustering & visual evaluation, inferred node’s attributes

• Possible automated validation w.r.t. available targets & e.g. Information gain



SIMILANT
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• 1-3) Select descriptor&similarity metric, clustering, visualization

• 4-5) Visualize clusters and features of the descriptor

• 6) Browse selected cluster, its instances & validate over known 
targets



SIMILANT
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• Several visualization variants 
• Various per-cluster features can be mapped to cluster size and color

• Several options to display & compare cluster descriptors



Do we have relevant knowledge?
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- Heavy anonymization caused several problems

- Lack of proper targets (what to validate against?)

- Final solution may differ from some current proposals 
- household detection might be just a hidden attribute

- Dataset is quite noisy (e.g., outdated addresses)

- Nonetheless, still capable to disclose interesting features



Some examples so far
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ATM’s withdrawn amount weekly per hour 

3-shift factory workers

„booze ATMs“ (close to bars)

Another example: high average 
night withdrawals for an ATM 
close to a night club

Business centres (drop on 
weekends)



Some examples so far
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Card payment MCC codes

Frequent travellers

Weekly payments in foreign 
countries (holiday peaks): 
distinguish between travels for 
work and leasure

Mostly ATM withdrawals – do 
not like card payments / elderly 
persons?

Paying by card for common 
things



Some examples so far
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Counterparties: per month
outcomes

Seasonal labor?

Christmass loans?

Financial office (tax refounds)

No need to explain everything, just to 
believe that similarity is meaningful
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Weekend fun example

„sim32“ = DTW on hourly withdrawals



Current state & Future work
• Preliminary network construction process ready

• SIMILANT tool for evaluating individual similarity descriptors

• Some early results seems promissing
• Partially explored: client features, counterparties, countries, ATM withdrawals
• TODO: merchant descriptions, payment patterns, locations etc.

• Challenges
• A bit too broad domain (too many possible hypotheses, pre-processing, 

descriptors, similarity metrics, clustering & parameters)
• Dynamic domain, detection of changes (life milestones, business closures), 

time-aware edges
• Ethical challenges  - reliability of latent edges, validity for important decisions

• Future plans
• Compare with std. social network properties (communities, hubs?)
• Time-aware models
• Network visualization & exploration
• Explanations & action recommendations
• Expansion beyond banking domain (insurance, teleco etc.)

TIR 2019, Linz, Austria



TIR 2019, Linz, Austria

Thank you! 
Questions?


