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Context & Disclaimer

* Industry-based project

e Co-operation with a modest-sized bank & Profinit EU (data analytics)
* General motivation: ,get to know“ our clients better

* Increased revenues, detect potential problems, unwanted situations etc.
* Rather a fuzzy task without strict goals

* Traditional banking

 Relational data (clients, products, transactions)
 Standard analytics (SELECT/GROUP BY/FILTER), ML based on facts

* Some statistical task-specific analytics

* Mostly predictions in risk management (loan/mortgage business), fraud
detection/prevention

« Common ML techniques, simple features (demographics, risk classes,
income, etc.)



Motivation

* What can be done beyond traditional approaches?
* Go beyond explicit fact checking
* Model similarities of bank clients based on their behavior
e Construct some latent , social network” based on clients’
similarities
* Social relations, locality relations, financial behavior patterns, etc.

* No explicitly given task -> focus on new business cases

* Personalized marketing, insurance recommendation, investments, financial
consultation, insolvency prevention, etc.
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Motivation

e Kate just added travel insurance to her card

* William is similar to Kate w.r.t. expenses structure, withdrawn ATM’s
countries and location patterns.

* Human readable explanation: they both travel but don’t like extreme sports
=> basic insurence will do. Also, maybe they’re a family?

 Milos did not received his salary last two months

* His expenses remain similar & he keeps withdrawing from ,booze
ATMs“ cluster
 Human explanation: he lost his job, but he keeps drinking like hell

 Maybe, not a good idea:

* Milos’s expenses structure & withdrawn ATM'’s clusters are similar to
how did Andrej behaved a year ago. Andrej received a loan, but failed
to repay it.
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Data available

 Demographics
* Name, gender, age, address...

* Credit score, loan payment history, frauds...
» Some data anonymized / hashed for us

Transaction data

e Transactions .

Ree incomes (salary,...)

* Allow to model similarities  ciient
of clients based on various  Prefile
financial behavior profiles ender

age

|‘| .g shopping (location, amount, type)

) RICh attribUte StrUCture ZZSE«:Zn E ATM withdrawals (location, amount)
M
* Temporal context =
A, .
kad Payments (tax, insurance, debt...)
* 3rd Party Data

* E.g. Real estate, business or criminal registers
 Legal concerns (however useful for manual verification)
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Latent social network model

third-party data
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Latent social network model
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. RuIe based edge extractlons

* Fact checking, e.g., family/relatives, co-workers

» Aggregated relations (e.g., mutual transactions -> business relations
/ employers)

* Can be done with traditional approaches




Latent social network model

e Similarity-based edge extractions

Focus on client’s behavior

 Stream of transactions (possibly window-based aggregations)

 Amount, datetime, location, frequency, counterparty,

transaction type, type of business (+ bran
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third-party data

Latent social network model
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* Relations among clients (aggregated from low-level edges)

e Client’s attributes (both factual and inferred)

* Time-aware edges, relation relevance score




Latent social network model

* Low-level latent social multigraph

* Decomposed relations over other node types (locations, institutions etc.)

* E.g. Personl- -Person2 ->
Personl — & Person2 —

* Finer grained relationship mining
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Latent social network model

* SIMILANT

* Analytic tool to evaluate similarity descriptors

» Which descriptors are meaningful? What pre/post-processing? What
similarity metric?

 Clustering & visual evaluation, inferred node’s attributes
* Possible automated validation w.r.t. available targets & e.g. Information gain
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SIMILANT

Model

MCC Codes

Clustering
None
Hierarchical

k-Means

1

Visualisation
PCA[1,2]

®
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Visualisation Clusters Browser Validation @
Birth Year
@ D:t=5=t [
4
960
@ Global Cluster
Cluster Difference (against global) Count 320450 1517
UaveliexpeRsE — Mean 1937 1544 19612
adiholes: ier - Variance 76065.0243  74.6933
ngfﬁggﬁg;{;%ggg Entropy 57636 34566
- m%rilweer - Information Gain 0 2307
office serwc%
o icemsel.gr? |
enieret =
res ETIITTEHES [ ]
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car_renta
arlines
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e 1-3) Select descriptor&similarity metric, clustering, visualization

* 4-5) Visualize clusters and features of the descriptor

* 6) Browse selected cluster, its instances & validate over known
targets
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e Several visualization variants
* Various per-cluster features can be mapped to cluster size and color

* Several options to display & compare cluster descriptors
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Do we have relevant knowledge?

- Heavy anonymization caused several problems
- Lack of proper targets (what to validate against?)

- Final solution may differ from some current proposals
- household detection might be just a hidden attribute

- Dataset is quite noisy (e.g., outdated addresses)



ATM’s withdrawn amount weekly per hour
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3-shift factory workers

Business centres (drop on
weekends)

,booze ATMs“ (close to bars)

Another example: high average
night withdrawals for an ATM
close to a night club



Card payment MCC codes
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Mostly ATM withdrawals — do
not like card payments / elderly
persons?

Frequent travellers

Paying by card for common
things

Weekly payments in foreign
countries (holiday peaks):
distinguish between travels for
work and leasure
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No need to explain everything, just to
wasia  Delieve that similarity is meaningful
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Weekend fun example

Data
(original) Sample data

Data Precompute
(sample) (distance matrix)

Distance matrix

Compute
(distance matrix)

[only for similar objects]

Find threshold range
Threshold {10% of distances) }

J

graph G_  Vibel = “PEIson’ graph Gy
name = “Tom”

Viabe = “PeErson’
name = “Greg”

Vigbel = “ATM” P
ddress = “7 Central Square” w‘§0§

age=34 QO

enpe = “withdrawals” Qj‘%

name = “Greg

Ehype = "WF ATM usage”

erel\ab\lity =038

Sty = | %, Vigbet = "ATM” age =34
\\Q address = “666 Bar Avenue” %%
................. centroid descriptor: i;
“weekend fun ATM” -
hdrawal 4
Elype = “withdrawals” e d
O Sty = df") Viapel = “ATM”
Vigbel = "ATM” address = “13 Pub Street’

Viabel = “person”
name = “David”
age = 38

,Sim32“

address = “24 Club Street”
name = “David”

“weekend fun” (WF) age = 38

cluster of ATMs

= DTW on hourly withdrawals

name = “Tom”



Current state & Future work

* Preliminary network construction process ready
e SIMILANT tool for evaluating individual similarity descriptors

* Some early results seems promissing
 Partially explored: client features, counterparties, countries, ATM withdrawals
 TODO: merchant descriptions, payment patterns, locations etc.

* Challenges

* A bit too broad domain (too many possible hypotheses, pre-processing,
descriptors, similarity metrics, clustering & parameters)

* Dynamic domain, detection of changes (life milestones, business closures),
time-aware edges

Ethical challenges - reliability of latent edges, validity for important decisions

Compare with std. social network properties (communities, hubs?)
* Time-aware models

Network visualization & exploration

Explanations & action recommendations

Expansion beyond banking domain (insurance, teleco etc.)
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Thank youl!
Questions?



