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Outline

1. Motivation
2. Materials
3. Methods
4. Results
5. Conclusion
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Motivation

I Software vulnerabilities are concrete software bugs with
security implications (usually cataloged with CVEs)

I Software weaknesses are abstractions for the underlying “root
causes” behind vulnerabilities (usually cataloged with CWEs)

I Challenges for archiving of vulnerabilities and weaknesses
• Proliferation of databases & reporting infrastructures, etc.

I Many vulnerability databases do not catalog weaknesses
• Manual work required, complexity of the CWE standard, etc.

I Thus, automation is desirable for both research and practice
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Materials (1/5)
I Three data sources:

1.

2.

3.
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Materials (2/5)

I The goal is to map vulnerability entries in the Snyk database
into weaknesses in the CWE database, using a subset of
weaknesses that have vulnerability entries in NVD
• One-to-one mappings between Snyk and the CWE database
• NVD has only an indirect role to map CVEs to CWEs
• Maven, pip, npm, and RubyGems are included from Snyk

I Mappings can be “direct” (via CWE) or “indirect” (via CVE)

I In addition to the primary “first-order” textual data in the
Snyk database, the content behind the online references
provided are used as additional “second-order” textual data
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Materials (3/5)

Vulnerability

CWE

Vulnerability

CVE

CWE

Vulnerability

Web page

CWE

Vulnerability

Web page

CVE

CWE

Direct,
first-order

Indirect,
first-order

Direct,
second-order

Indirect,
second-order

“Can be mapped from”

Figure: An Example of Four Abstract Relations for Software Weaknesses
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Materials (4/5)

## Overview
[`pymongo`](https://pypi.python.org/pypi/pymongo) is a Python driver for
MongoDB.

`bson/_cbsonmodule.c` in the mongo-python-driver (aka. pymongo) before
2.5.2, as used in MongoDB, allows context-dependent attackers to cause a
denial of service (NULL pointer dereference and crash) via vectors related
to decoding of an "invalid DBRef."

## References
- [NVD](https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-2132)
- [Github Commit](https://github.com/mongodb/mongo-python-driver/commit/
a060c15ef87e0f0e72974c7c0e57fe811bbd06a2)
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Materials (5/5)

[...] The software performs operations on a memory buffer, but it can read
from or write to a memory location that is outside of the intended boundary of
the buffer. Certain languages allow direct addressing of memory locations
and do not automatically ensure that these locations are valid for the
memory buffer that is being referenced. This can cause read or write
operations to be performed on memory locations that may be associated with
other variables, data structures, or internal program data. As a result, an
attacker may be able to execute arbitrary code, alter the intended control
flow, read sensitive information, or cause the system to crash.

The generic term memory corruption is often used to
describe the consequences of writing to memory outside the bounds of a
buffer, when the root cause is something other than a sequential copies of
excessive data from a fixed starting location (i.e., classic buffer
overflows or CWE-120). This may include issues such as incorrect pointer
arithmetic, accessing invalid pointers due to incomplete initialization
or memory release, etc. [...]
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Methods (1/2)

I The information retrieval techniques used are compared
against commonly used regular expression searches

• Estimation is carried out with a subset within which each
entry matched the regular expression searches

• n1 = 82 weaknesses and n2 = 585 vulnerabilities

I Precision =
(# same CWE)

(# same CWE) + (# different CWE)

• Do not connote with “true positives” and “false positives”
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Methods (2/2)

I A fairly typical pre-processing routine (i.e., lower-casing,
tokenization, trimming, stemming, etc.) is used

I Analysis carried out with unigrams, bigrams, and trigrams

I Five different weights are used: (1) term (i.e., n-gram)
frequency (TF), (2) TF-LOG, (3) TF-BOOLEAN, (4) TF-IDF,
and (4) DLM-IDF (document length normalization with IDF)

I Cosine similarity used as the similarity metric
• Maximum values are used to pick CWEs for vulnerabilities

I In addition, the so-called latent semantic analysis (LSA)
was briefly examined as an additional validation check
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Results (1/4)

Table: Descriptive Statistics

Unigrams Bigrams Trigrams
Unique n-grams 8435 32166 31745
Average document length 1095 935 839

• Average CWE length 424 357 252
• Average vulnerability length 1175 1016 921
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Results (2/4)
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Figure: Maximum Cosine Similarities According to Four Weights
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Results (3/4)
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Figure: Precision with Five Weights
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Results (4/4)

Table: Average per-Repository Precision (TF-IDF)

Maven pip npm RubyGems

Unigrams 0.17 0.34 0.55 0.25
Bigrams 0.16 0.31 0.09 0.62
Trigrams 0.10 0.12 < 0.01 0.50
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Conclusion

I Common information retrieval techniques perform poorly
=⇒ Recommendation for practitioners: whenever possible,
explicitly reference database entries with CVEs/CWEs
=⇒ Further validation work is required, however

I Two main possibilities for moving forward:
1. Data enrichment =⇒ reference corpora for security
2. Data enlargement =⇒ toward big data with web crawling
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Thank you

Questions?


