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Graph Embedding

Latent Dimensions

e Anomaly Detection
e Attribute Prediction
e Clustering

e Link Prediction

[ ]

Adjacency Matrix

Given graph G with a set of nodes V' = {vy,...,v,}
f:UiHyiERd,d<< |V|

@ Methods based on eigen-decomposition of the Adjacency Matrix
@ Methods inspired by NLP and Deep Learning
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What is an Ego Network?

@ Social graphs have been divided to several subgraphs (ego-networks) [1]

e extracting features for nodes
e detecting distinct neighborhood patterns
e study social relationships

@ Ego-network [1]

e ego
o alters
e social circles

Friends
Family members

An ego-network with four social circles
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Local Neighborhood Analysis

@ Neighborhood around each ego has a different pattern [2]
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(e) Powerful ego node (f) Strong ego neighbor (g) Less cohesive star (h) Star
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Local Neighborhood Analysis

@ Neighborhood around each ego has a different pattern [2]

(e) Powerful ego node (f) Strong ego neighbor (g) Less cohesive star (h) Star

@ Finding a vector representation for each ego-network

@ Social circle detection and prediction
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Social Circle Prediction

@ Predicting the social circle for a new added alter to the ego-network
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Our Contributions

@ We introduce local vector representations for egos to capture
neighborhood structures

@ We apply local vectors to the circle prediction problem

@ We replace global representations by local to improve the performance
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Vector Representation for Social Graphs

@ DeepWalk [3]

o walks globally over the graph and samples sequences of nodes
e treats all these sequences as an artificial corpus
o feeds the corpus to a Skip-Gram based Word2Vec [5]

V71 — Uy — Vs — Uy — V7 —> Vgo —
V92 — Vg — V3 — VU] — V12 — V73 —
V37 — VU3qg — V9 — VU1 — Vg — V9q —
V73 — Ugqg — Vs — U] — U2 —> v —
V5 — V4 — Vg — U] — U3 — Vgl —
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Vector Representation for Social Graphs

@ DeepWalk [3]

Input layer

Xy
X;
X3

Xk

Xy
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walks globally over the graph and samples sequences of nodes
treats all these sequences as an artificial corpus

feeds the corpus to a Skip-Gram based Word2Vec [5]
Word2Vec: Having the sequence of words {wq, wa, ..
Wiyl - -, Wy}, language models aims to maximize P(w;|wy, ..

-y Wi—1, Wt,

Output layer
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Vector Representation for Social Graphs

@ DeepWalk [3]

walks globally over the graph and samples sequences of nodes

treats all these sequences as an artificial corpus

feeds the corpus to a Skip-Gram based Word2Vec [5]

Word2Vec: Having the sequence of words {w1,ws, ..., wi_1,w,

Wiyl -+, Wy}, language models aims to maximize P(w|wy, ..., wi_1).

e given sequence of nodes {v1, v, ..., V1, Vs, Vgg1,...,Upn} it
maximizes: Y, 10g Pr(v|vise, sVt Uttty -5 Vt—c)

o glo: V — R4

Do 05 oo 05 10 1s 20 25
Input Output
Zachary's karate club embedding [2]
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Vector Representation for Social Graphs

@ node2vec [4]

o similar to DeepWalk with two additional parameters

o hyper-parameters p € R* and ¢ € R™ control random walks
e ¢ >1 and p < min(q, 1) walk locally (BFS)

o p>1and g <min(qg,1)) walk explorative (DFS)
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Vector Representation for Social Graphs

@ node2vec [4]

o similar to DeepWalk with two additional parameters

o hyper-parameters p € R* and ¢ € R™ control random walks
e ¢ >1 and p < min(q, 1) walk locally (BFS)

o p>1and g <min(qg,1)) walk explorative (DFS)

@ Even the local walk can exceed the ego-network
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Social Circle Prediction by McAuley et al. [1]

ALGORITHM 2: Update memberships node x and circle .

Data: node x whose membership to circle C}, is to be updated
Result: updated membership for node x
initialize £:(0) := 0, ¢£(1) := 0;
construct a dummy node x, with the communities and features of x but with x ¢ Cy;
construct a dummy node x; with the communities and features of x but with x € Cy;
for (c, f) € dom(¢ypes) do
// ¢ = community string, f = feature string
n:= types(c, f);
// n= number of nodes of this type
if S(x) =c¢ A Qx) = f then
// avoid including a self-loop on X
ni=n-1;
end
construct a dummy node y with community memberships ¢ and features f;
// first compute probabilities assuming all pairs (x,y) are non-edges

25(0) := €%(0) + nlog p(xo. y) ¢ E); fistname —(Bly ] position
25(1) := €5(1) + nlog p((x1, y) ¢ E); %m name e—
end P
for (x.y) € E do SN o
// correct for edges incident on x e name St
£40) := €4(0) — log pl(xo. y) ¢ E) + log pl(xo. ) € E); e S
25(1) := €5(1) — log p((x1. y) ¢ E) +log p((x1, y) € E);
end 0] first name : Dilly

// update membership to circle k g j’;ﬂsﬁf':x‘ww liv;':l"’
types(S(x), Qx)) := types(S(x), Qx)) — 1; Ot e e m fist name
2 < U0, 1); 1| work : position : Cryptanalyst | ok vosition
i k k 1-0,, = |1| work : location : GC&CS 100, = |1 | work - 1[’"1 .
if z < exp {T'(¢%(1) — €%(0))} then 0| work : location : Royal Navy 1| ok s ocation

| Sek =1 1| education : name : Cambridge 1| education : nan

education - 1 llege education : type
else 1| education g
0| education rinceton
| Skl :=0 0] education : type : Graduate School

end
types(S(x), Qx)) := types(S(x), Qx)) + 1;

@ A Probabilistic Classifier
@ Time Complexity O(n?)
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Outline

@ Approach
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Local Representations using Paragraph Vector

@ walking locally over an ego-network to generate sequence of nodes
@ treating this sequence as an artificial paragraph

@ applying Paragraph Vector [6] to learn vector representation
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Local Representations using Paragraph Vector

walking locally over an ego-network to generate sequence of nodes

treating this sequence as an artificial paragraph

applying Paragraph Vector [6] to learn vector representation

given an artificial paragraph vy, vo,vs, ..., v, ..., v; for ego u;, it maximizes
the average log probability:

1
Z log Pr(ve|t;, Ot yey -+« Vt—e)

t=1
loc: U — R4 Classifier

Concatenate

//

1N
Ego Matrix - |:'|1::| * *
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Social Circle Prediction

@ Setting

o social network G = (V, E) with egos U and alters V' \ U

o profile information (v.featy,...,v.featy) for every v € V
@ Input/Output

e predict social circles ¢: V\ U — {C4,...,Cx}* given several samples
@ Approach

o Feature selection (users’ profile information, graph embeddings)
o A Neural Network Classifier
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Incorporating Profile Information

@ Similarity of ego’s and alter's profile as a feature

e ego's profile feature: u.featq, ..

., u. featy
feat s

e alter's profile feature: v.featy,...,v.

o sim(u,v) = (b, ..

(TIR Workshop)

.,br), where

0 otherwise.

b — {1 if u.feat; = v.feat;,
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Social Circle Prediction

@ A feed-forward neural network classifier Input layer Hidden layer Output layer

O

@ Predicting social circle for alter v which
belongs to ego-network of ego u

@ Input layer:

locglo: loc(u) @ glo(v)

gloglo: glo(u) @ glo(v) . . |
locgloglo: loc(u) @ glo(u) @ glo(v) 8.%{)/

locglosim: loc(u) @ glo(v @ sim(u, v)
gloglosim: glo(u) @ glo(v) @ sim(u, v)
locgloglosim: loc(u) @ glo(u) @ glo(v) ® sim(u, v)

@ Hidden layer: a single dense layer with ReLU activation units
@ Output layer: softmax units (same number as circles)
@ Ground-truth

o alter's circle label (family, colleagues, etc)
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Dataset

Table 1: Statistics of Social Network Datasets [7]

Facebook  Twitter Google+

nodes \4 4,039 81,306 107,614
edges |E| 88234 1,768,149 13,673,453
egos |U| 10 973 132
circles IC] 46 100 468
features  f 576 2,271 4,122
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Experimental Results

Table 2: Performance (Fj-score) of different embeddings for circle prediction on
three dataset. Standard deviation is less than 0.02 for all experiments.

Approach Facebook Twitter Google+
gloglo 0.37 0.46 0.49
locglo 0.42 0.50 0.52
locgloglo 0.37 0.44 0.48
gloglosim 0.40 0.49 0.51
locglosim 0.45 0.53 0.55
locgloglosim 0.38 0.46 0.47
®!, McAuley & Leskovec [1] 0.38 0.54 0.59
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Future Work

@ Using embeddings to approximate more complex measures (e.g.
shortest-path distance)

@ Using embedding to find similar egos
@ Learning embedding for directed graphs
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Word2vec [5]

@ Language Modeling

e Distributional Hypothesis in the natural languages: semantically similar
words dispose to appear in similar word neighborhoods

@ Having the sequence of words {wy,wa, ..., ws—1, Wy, ..., wy, }, language
models aims to maximize P(w¢|wy, ..., ws—1).

@ In word2vec [2], they defined a fix context length surrounding each word

@ with length context c and the sequence of words
{wy,wa, ..., ws_1, Wy, ..., w, } the goal is to word2vec is to maximize:
Yor log P(wiwise, .. wi—c)

@ The neural network which learns word representations:

e One hidden layer

e The number of input layer entries is equal to the vocabulary size of the
text

e The number of units in the hidden layer determines dimensionality of
the vectors
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Word2vec [5]

@ Having a sequence of words {wy,wa, ..., w1, Wy, ..., w, } and context
window with length one

@ Predict one target word, given one context word P(w;|w;_1).

Input layer Hidden layer Output layer

@ Each input is a one-hot encoding vector

@ The probability is computed using the softmax function:
h=WTxx, u=WTxh, Plwlw_1)=y = Z:{jiu

@ After several iterations matrix W will not change
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Paragraph Vector

@ Given a sequence of paragraphs p1, p2, ..., pq and training words
Wy, Wa, W3, ..., W, ... Wy, the idea of Paragraph Vector [6] is to maximize

p(wt‘pj7wt—0"'a wt-l—c))
@ For example consider 2 paragraphs and window size of 3

e P; : | The cat sat| on the mat

e P, : | ate potato crisps for evening snack
e p(on|Py, The,cat, sat)

Classifier [on |

Average/Concatenate

//

Paragraph Matrix----- > * * *

Paragraph the ca
id
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