

Classifying Web Exploits with Topic Modeling

Jukka Ruohonen

TIR 2017, Lyon

Outline

- 1. Terminology
- 2. Motivation
- 3. Data
- 4. Examples
- 5. Processing
- 6. Classification
- 7. Results
- 8. Conclusion

Terminology

- Software vulnerabilities are security-related bugs
- Exploits are implementations targeting such bugs
 - To compromise a system, to cause a denial-of-service, etc.
- > Yet, proof-of-concept (PoC) exploits are slightly different
 - Neither written nor used for actual attacking
 - Typically used during vulnerability disclosure
 - Though, also for money and fame & glory
 - This said, ethical issues are still present also with PoCs

Motivation

Turun yliopisto University of Turku

- The **demand** for exploits has increased in recent years
 - Penetration testing and offensive security in general, etc.
- > Archiving of vulnerabilities and exploits requires a lot of work
 - Recent delays in CVE assignment via MITRE Corporation
 - OSVDB was shutdown due to maintenance problems
- Thus, a basic question is how to automate the archiving?
 - Basically, assign a case to a predefined meta-data category
 - Related work in software engineering ("bug triaging")

Data

Turun yliopisto University of Turku

- 36184 raw exploits archived in Exploit Database (EDB)
- The exploits archived are in unstructured text format
 - PoC code, disclosure events, attribution credits, etc.
 - Gathered from mailing lists, bug trackers, blogs, etc.
- A number of meta-data categories are present
 - Based on manual classification done by EDB maintainers
 - In this work, web and PHP categories are used for brevity

Examples (1/3)

Home Exploits

Shellcode F

Papers Google Hacking Database

Submit Search

Offensive Security's Exploit Database Archive

37699 Exploits Archived

The Exploit Database – ultimate archive of Exploits, Shellcode, and Security Papers. New to the site? Learn about the Exploit Database.

Figure: Source: EDB (https://www.exploit-db.com/), August 2017

Examples (2/3)

University of Turku

EDB-ID: 24907	Author: High-Tech Bridge SA	Published: 2013-03-29
CVE: CVE-2012-5879	Type: Remote	Platform: Windows
Aliases: N/A	Advisory/Source: Link	Tags: N/A
E-DB Verified: 🕜	Exploit: 🜷 Download 7 View Raw	Vulnerable App: N/A

« Previous Exploit

Figure: Source: EDB (https://www.exploit-db.com/), August 2017

Examples (3/3)

University of Turku

EDB-ID: 24958	Author: superkojiman	Published: 2013-04-15
CVE: N/A	Type: Remote	Platform: Windows
E-DB Verified: 🎺	Exploit: 🌷 Download / 🗋 View Raw	Vulnerable App: 🌄

« Previous Exploit

Figure: Source: EDB (https://www.exploit-db.com/), August 2017

Processing

Turun yliopisto University of Turku

- A pre-processing routine with six steps
 - Including tokenization, lemmatization, stop words, etc.
- Separation of English words and non-English terms
- Word and term frequency matrices are used for LDA
 - That is, the Latent Dirichlet Allocation (LDA) method
 - Each exploit is assigned to the **most dominant** (text or word) topic according to the highest membership rate
- ▶ Number of topics (k) restricted to k = 5, 10, 20, 30, 40, 50
 - Default settings and parameters used otherwise (R impl.)

- Separate classifiers for two categories
 - Web exploits and exploits targeting PHP
 - Results almost perfectly **balanced** data
- Computation with the random forest algorithm
- ▶ In total, 40 features (from which two are LDA-based)
 - Many are well-known metrics (which require manual work)
 - How much performance is gained from the LDA-metrics?

Classification (2/4)

₹ 990

Figure: Response category #1 ("web")

Classification (3/4)

・ロト ・ 雪 ト ・ ヨ ト

3

Figure: Response category #2 ("PHP")

Classification (4/4)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

#	Description
1.	One for the most dominant term-based topic characterizing the exploit.
2.	One for the most dominant word-based topic characterizing the exploit.
3.	One if the EDB community has verified the exploit.
4.	One if the vulnerable application is available for download.
5.	One if a screenshot is provided for a demonstration or other purposes.
6.	The number of OSVDB references or zero for no such references.
7.	The number of \ensuremath{CVE} references or zero for the absence of \ensuremath{CVE} references.
8.	The mean of CVSS base scores for all CVE references (or zero for no refs.).
9.	The year at which the exploit was first published according to EDB.
10.	The month at which the exploit was first published according to EDB.
11 40.	One if the author of the exploit is among the "top-30" developers.

Results

		Accuracy		
k	Covariates	Web [95 % CIs]	PHP [95 % CIs]	
0	38	0.788 [0.765, 0.810]	0.742 [0.717, 0.766]	
5	40	0.895 [0.877, 0.911]	0.843 [0.821, 0.862]	
10	40	0.910 [0.893, 0.925]	0.861 [0.841, 0.880]	
20	40	0.920 [0.904, 0.935]	0.888 [0.869, 0.905]	
30	40	0.912 [0.894, 0.927]	0.881 [0.862, 0.898]	
40	40	0.914 [0.897, 0.929]	0.863 [0.843, 0.882]	
50	40	0.913 [0.896, 0.928]	0.878 [0.858, 0.895]	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conclusion

Turun yliopisto University of Turku

- ► The accuracy range [0.89, 0.92] is good in the context
 - But the statistical performance mostly comes from **conventional metrics** that require manual work
 - Should test how well plain frequency matrices work
 - Multi-class classification required in practice
- How to separate PoC code from other content?
 - Not as easy as separating code from code comments
 - Would have practical value in security and threat intelligence

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thank you

Questions?