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Abstract—This short empirical paper investigates how well
topic modeling and database meta-data characteristics can clas-
sify web and other proof-of-concept (PoC) exploits for publicly
disclosed software vulnerabilities. By using a dataset comprised
of over 36 thousand PoC exploits, near a 0.9 accuracy rate is
obtained in the empirical experiment. Text mining and topic
modeling are a significant boost factor behind this classification
performance. In addition to these empirical results, the paper
contributes to the research tradition of enhancing software
vulnerability information with text mining, providing also a few
scholarly observations about the potential for semi-automatic
classification of exploits in the existing tracking infrastructures.

Index Terms—Text mining, LDA, EDB, NVD, CVE, CVSS

I. INTRODUCTION

This short empirical paper investigates whether and how
well topic modeling and database meta-data characteristics
can classify web and other proof-of-concept (PoC) exploits
for publicly disclosed software vulnerabilities. To provide a
tentative definition, PoC exploits are software implementations
for concretely demonstrating the existence of a software
vulnerability, which is a software defect with security im-
plications. While underlining that PoC exploits may perform
poorly for actual exploitation [1], this definition also aligns
and connects the scholarly vulnerability research tradition to
the field of software repository mining [2], [3]. However,
the existing research in this tradition has mostly focused on
software vulnerabilities. This gap in the literature may yield
biases because not all vulnerabilities are exploitable as such;
hence, not all vulnerabilities are relevant for repository mining.

The research on automatic solutions for defect labeling and
related bug “triaging” aspects (e.g., [4], [5]) provide a further
motivation. Exploits are disclosed and published on numerous
different Internet platforms—including but not limited to secu-
rity databases, mailing lists, blogs, and bug trackers. Although
systematic archiving has recently gained traction, a human is
still required to evaluate and classify exploits gathered from
such diverse sources. This human-side has largely been also
ignored in previous research. For instance, many proposals for
unifying vulnerabilities, exploits, and related security informa-
tion with different abstract frameworks (see [6], [7], [8], [9])
do not discuss how the unification should work in practice.
In other words, proposing a yet another ontology or a further
database schema is arguably unfruitful when there are well-
known problems for managing even the current volume of
vulnerabilities and exploits (cf. [10], [11]). In addition to
benefits for manual exploit triaging, automation improvements
are beneficial for large-scale harvesting of exploits with web
crawling and related data collection techniques.

The noteworthy related works are the text mining applica-
tions for examining and enriching software vulnerability and
related software security information [12], [13], [14], [15].
Given this background, the paper examines the natural lan-
guage characteristics of the exploits archived to the open data
Exploit Database (henceforth, EDB) [16], which is currently
the likely most comprehensive database for archiving exploits.
According to surveys, it is also preferred by many contempo-
rary exploit developers [17]. For examining the database and
the exploits archived, a small classification experiment is con-
ducted for evaluating how well existing EDB meta-data char-
acteristics and text mining can classify exploits. For brevity,
exploits for web application vulnerabilities are classified in
relation to other software types targeted by exploits. This
empirical classification experiment is prepared in Section II.
Results and discussion follow in Sections III and IV.

II. MATERIALS AND METHODS

The raw datasets contains all exploits that were archived
to EDB in early October 2016. While (mis)selection of a
corpora is a typical reason for construct validity biases in
topic modeling applications [18], the analysis in this paper
exploits a “natural bias” in terms of the persistence of different
web vulnerabilities [13], [19], and, hence, web exploits. That
is to say, the intention is to classify web and other exploits
based on meta-data and natural language characteristics. The
meta-data characteristics refer to the database schema used in
EDB, which is maintained semi-manually for categorization
and other purposes, whereas the latter are derived by text
mining techniques for which pre-processing is also required.

A. Pre-processing

The PoC exploits archived to EDB are in raw text format.
In many cases, the exploits refer to self-contained program-
ming code snippets that demonstrate the proof-of-concepts
for exploitation. The programming languages used include C,
Python, Perl, Ruby, and other scripting languages. Sparse code
comments are also typically present. However, the issue of
separating exploit code from natural language characteristics
is not comparable to the well-known (e.g., [20]) problem
of separating code from code comments. Instead, the issue
resembles more the genre of software artifact retrieval from
heterogeneous semi-structured sources [21], [22]. In other
words, the exploits archived refer to free-form text entries
that contain information beyond programming details. For
instance, attribution credits, disclosure details, and remediation



instructions may be included in the archives, while the actual
exploitation code may amount only to a few lines of code.

For these reasons, each archived entry is pre-processed
without explicitly attempting to separate the non-code text
excerpts from the programming language code. Implicitly,
however, a partial separation is done during the six pre-
processing steps subsequently enumerated.

1) Due to the aforementioned issue related to separating
exploit code from non-code, it is not reasonable to con-
sider tokenization techniques such as text splitting ac-
cording to the so-called “CamelCase” or “under_score”
notations [23], [24], [25], or according to the analogous
“slash/notation” [26] and “dot.notation” [27] commonly
used for malware labeling, for instance. Thus, each
raw exploit entry is first tokenized simply by using the
word_tokenize function in the de facto text ming
library for Python [28]. These tokens are used for inputs
to the subsequent pre-processing checks and routines.

2) Tokens less than four characters in length are sub-
sequently excluded alongside with tokens with length
longer than 20 characters. While the former exclusion
criterion is commonly used in text mining (e.g., [25]),
the latter is specific to the context, typically capturing
and excluding tokens referring to large hexadecimal pay-
loads used in exploits for buffer overflow vulnerabilities.

3) The next step involves classifying all tokens into words
and non-words (henceforth, words and terms). Python
bindings [29] for a common open source English dictio-
nary [30] are used for this classification of the tokens.

4) The WordNet-based NLTK function lemmatize is
then used for grouping similar words (but not terms)
according to their dictionary forms. Due to the spe-
cific context of exploits, lemmatization is preferable to
conventional stemming algorithms. For instance, exem-
plifying typical over-stemming issues [24], the word
vulnerability is undesirably stemmed to vulner.

5) A few stopwords are removed from the collections
of lemmatized words (and non-lemmatized terms as a
double-check). NLTK’s default stopword list is used.

6) After all exploits have been processed, those words
and terms are excluded that have a frequency less than
20 across all exploits observed. While this again com-
monly used (e.g., [31]) frequency-based pre-processing
criterion excludes a substantial amount of words and
terms, the choice is partially justified by practical aspects
related to computational memory requirements. Finally,
seven exploits (alongside the corresponding words and
terms) were excluded from the analysis because either
no words or no terms were present after the exclusion.

These six steps result two frequency matrices for words
and terms; each row denotes an exploit and each column
an unigram (a word or a term), such that the (i, j):th entry
contains the frequency of the j:th unigram for the i:th observed
exploit among the n = 36, 184 exploits observed. In total,
4, 844 words and 7, 995 terms were identified from these

exploits with the sixfold pre-processing routine. Although the
separation is only implicit, the two matrices can be reflected
against the lower entropy that programming code typically
exhibits compared to natural language [20]. The same likely
applies also to general technical terms and security industry
slang typically used in the sample. Therefore, separate topics
are extracted from the two unigram matrices, and the topics
computed are used as separate covariates for classification.

B. Topics

The topics are extracted from the two frequency matrices by
using the latent Dirichlet allocation (LDA) method developed
by Blei and associates [32]. As this method is a modern classic
in computer science, which is accompanied by surveys and
hands-on guides for software engineering [23] and related
fields [33]—including detailed information about the use for
software vulnerabilities [13]—a few practical remarks are
more relevant than a brief summary of the LDA method itself.

In a nutshell, the method is based on Bayesian mixture
modeling in which a topic is a multinomial probability distri-
bution over words from a finite vocabulary [31]. As Dirichlet
processes are used for deriving the prior distributions in LDA,
the first practical concern for applied research relates to the
two parameters governing the per-exploit topic distribution
and per-topic “word-or-term” distribution. Although these pa-
rameters should arguably reflect genuine prior information,
computational routines and rules-of-thumb are commonly used
in practice [23], [33]. In this paper, likewise, the estimation
routine in the R package used for computation [34] is adopted
for determining the parameters (i.e., the package’s default
settings are used). The second issue for applied work relates to
the fact that a single exploit is often characterized by multiple
dominant topics, which entails a choice over a threshold scalar
for cutting off irrelevant topics [35]. Given the classification
purposes of this paper, each exploit is assigned to the most
dominant topic with the highest membership rate. The third
and final concern relates to the number of topics to extract.
Because the topics assigned for each exploit are used for
classification, which implies that interpretation and construct
validity are lesser concerns [33], the LDA is computed, for
the term and frequency matrices separately, by restricting the
number of topics to k = 5, 10, 20, 30, 40, 50. For each of these
restrictions, the corresponding dominant (word and term) topic
assignments vectors are used to build separate classifiers.

C. Classification

The classification experiment is computed by using an R
implementation [36], in combination with the caret pack-
age [37], for the tree-based random forest classifier. Rather
than summarizing this decision tree method, it is again more
relevant to focus on the practical aspects, starting from the
operationalization of the two binary-valued response metrics.

1) Responses: The binary-valued response metrics for the
classification are constructed from two meta-data schemas
provided in EDB. The first is based on the high-level cate-
gorization into denial-of-service (dos), local, remote, and web



exploits. As can be observed from Fig. 1, about 58 percent of
all exploits observed are located in the web-category. For the
first response metric, these web exploits are used as a reference
category (“true”), while the remaining three categories are
grouped into a single group of non-web exploits (“false”).
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Fig. 1. Exploit Categories (EDB’s meta-data)
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Fig. 2. Exploit Platforms (EDB’s meta-data)

The second response metric is based on the target platforms
to which the EDB community additionally groups the exploits
archived. In total, as many as 51 distinct platforms have been
used for this grouping, although the most common platforms
show no big surprises. By regrouping less common platforms
into a heterogeneous group of “Others”, the ten most frequent
platforms are illustrated in Fig. 2. Reflecting the large amount
of web exploits in the earlier Fig. 1, web sites and web
applications written in PHP have been the most frequent
targets for the exploits archived, followed by software running
on Windows and Linux, respectively. Analogous to the first
response metric, the PHP platform is taken as a reference
category against which the remaining platforms are compared.

2) Covariates: The covariate metrics enumerated in Table I
are included for classifying web and PHP exploits. While the
first two metrics are based on the dominant topic assignment
vectors (see Section II-B), the remaining ones are all based
on EDB’s meta-data. These meta-data covariates can be cate-
gorized into four high-level abstract groups.

1) The first group includes three binary-valued metrics
related to the evaluation work done by the EDB com-
munity for the exploits archived. Like all software,
exploits require testing. Verified, therefore, scores one in
case the exploit has been verified to work. Application
is likewise a dummy variable for recording whether
the archive contains also the vulnerable application
available for download. Reflecting the occasional use
of video demonstrations during software vulnerability
disclosure [38], the third dummy variable records the
cases for which a screenshot is available for download.

2) The second group contains three metrics explicitly or
implicitly related to other databases. Akin to the “vul-
nerability claims” made by the orchestrators of the
National Vulnerability Database (NVD) [3], per-exploit
references made by the EDB community to the Open
Source Vulnerability Database (OSVDB) are counted
with the metric named OSVDB references. (It can be also
remarked that OSVDB used to be the only comprehen-
sive open database containing some information about
exploits [39], but this database was shutdown in 2016
due to maintenance and other issues [11]. This does not
affect the results reported, however.) For each exploit,
the amount of references to Common Vulnerabilities and
Exposures (CVEs) are likewise counted via the metric
labeled CVE references. While these reference counters
are implicit in the sense that no attempts are made to
validate EDB’s claims, the Common Vulnerability Scor-
ing System (CVSS) is explicitly used to approximate
the average severity of the vulnerabilities targeted by
those exploits that have CVE references. Mean CVSS
thus denotes the arithmetic mean of so-called base CVSS
scores, which range from zero (negligible) to ten (catas-
trophic), and which are explicitly fetched from NVD.

3) The third group contains two calendar time metrics,
Month and Year. Due to the well-known data quality is-
sues affecting vulnerability (e.g., [10], [39]) and exploit
archives, interpretation should be done with care— but,
nevertheless, these two metrics convey the approximate
year and month at which a given exploit was first
published in the wild according to EDB’s evaluation.

4) The final set of covariates expands to 30 dummy vari-
ables for the most productive exploit developers. Thus,
the first dummy variable scores one for all exploits
authored by the most productive developer, and so forth.
When ranked by the number of exploits authored, the
resulting list largely confirms existing empirical ob-
servations [10], [40], [41]. For instance, the Metasploit
project and Luigi Auriemma are the top-two most pro-
ductive authors, but the list contains also names such as
rgod, r0t, and the Google Security Research group.

III. RESULTS

Estimation is carried by fitting 2× 7 models for classifying
web and PHP exploits (see Section II-C1). In terms of practical
estimation concerns, PHP exploits yield a precisely balanced
set (see Fig. 2). A sufficiently balanced set is available also
for web exploits (see Fig. 1). For comparing how much
information is gained from the dominant topic assignments
(see Section II-B), classification of the two response metrics
is first done by excluding the topic assignment vectors, and
then fitting separate models for the varying number of topics
extracted via LDA. As the topic assignments vectors for
words and terms do not notably correlate with each other
(see Table II), both vectors are included in these separate
models. A 5-fold cross-validation is used for training. To
maintain a sensible scenario for predicting new data, the



TABLE I
COVARIATES

# Mnemonic name Description
1. Term topic One for the most dominant term-based topic characterizing the exploit; zero otherwise.

2. Word topic One for the most dominant word-based topic characterizing the exploit; zero otherwise.

3. Verified One if the EDB community has verified the exploit; zero otherwise.

4. Application One if the vulnerable application is available for download; zero otherwise.

5. Screenshot One if a screenshot is provided for a demonstration or other purposes; zero otherwise.

6. OSVDB references The number of OSVDB references or zero for no such references.

7. CVE references The number of CVE references or zero for the absence of CVE references.

8. Mean CVSS The mean of CVSS base scores for all CVE references (or zero for no references).

9. Publication year The year at which the exploit was first published according to EDB.

10. Publication month The month at which the exploit was first published according to EDB.

11. – 40. Top developers One if the author of the exploit is among the “top-30” developers; zero otherwise.

TABLE II
TOPIC ASSIGNMENT CORRELATIONS (WORDS AND TERMS)

Topics (k)

5 10 20 30 40 50

Spearman rho −0.16 0.23 0.08 0.22 0.06 −0.10

TABLE III
CLASSIFICATION PERFORMANCE

k Covariates
Accuracy

Web [95 % CIs] PHP [95 % CIs]
0 38 0.788 [0.765, 0.810] 0.742 [0.717, 0.766]
5 40 0.895 [0.877, 0.911] 0.843 [0.821, 0.862]

10 40 0.910 [0.893, 0.925] 0.861 [0.841, 0.880]
20 40 0.920 [0.904, 0.935] 0.888 [0.869, 0.905]
30 40 0.912 [0.894, 0.927] 0.881 [0.862, 0.898]
40 40 0.914 [0.897, 0.929] 0.863 [0.843, 0.882]
50 40 0.913 [0.896, 0.928] 0.878 [0.858, 0.895]

exploits published in 2016 are used as a test set; these amount
to about 3.5 % of all exploits observed. (It can be remarked
that comparable results are obtained with randomly picked
test sets containing 10 % of the exploits.) Finally, accuracy
(i.e., the number of true positives and true negatives to all
exploits observed) is sufficient as a performance evaluation
metric in this paper. The accuracy rates reported in Table III
are presented also with 95 % confidence intervals (CIs).

According to the results, performance is rather good for
both response metrics, although higher accuracy rates are
obtained for web exploits. Performance also increases from the
inclusion of the dominant topic vectors. Given the optimum
number of topics around k ' 20, the performance increases are
about 0.132 and 0.146 for web and PHP exploits, respectively.

IV. DISCUSSION

This short empirical paper examined how well database
meta-data and topic modeling can classify web-related and
other exploits for known software vulnerabilities. By using

a dataset of over 36 thousand exploits, LDA with varying
number of topics, and a random forest classifier, the overall
accuracy rate was observed to be in the range [0.89, 0.92],
which is a fairly decent range in empirical software engineer-
ing applications. The few remaining points can be presented
in terms of limitations, which also provide more focused
questions for further empirical research.

While topic modeling was shown to provide a neat dimen-
sional reduction technique for classification, (a) it is unclear
whether better performance might have been obtained by using
the raw frequency matrices (or the inverse variants). In the
same vein, (b) the classification experiment was limited to web
and PHP exploits, although practical real-world applications
would likely require multi-class classification that takes all
categories (cf. Fig. 1) and platforms (cf. Fig. 2) into account.

Moreover, (c) different thresholds [23] could be adopted
for the dominant topic assignments. Perhaps a more important
concern relates to the pre-processing routines, which—like ar-
guably in most text mining applications—are always exposed
to validity concerns. In particular, (d) the used separation be-
tween English words and non-words is only a coarse approxi-
mation insofar as actual exploitation programming code is con-
sidered. In this respect, exploits posit a particularly challenging
case for mining and extracting software engineering artifacts
from heterogeneous sources [21], [22], [25]. Such extraction
would have also practical value. Finally, (e) the near 0.9 accu-
racy rate can be still argued to be modest because most of the
predictive power still comes from the meta-data characteristics,
which require manual, human-made classification and related
evaluation work. Taken together, these observations require
further research on automatic classification of vulnerabilities
and exploits gathered from heterogeneous Internet sources.
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