EXPLAINING TOPICAL DISTANCES USING WORD EMBEDDINGS

Nils Witt, ZBW Leibniz Information Centre for Economics Christin Seifert and Michael Granitzer, University of Passau

5 September 2016, Porto Portugal

INTRODUCTION

WORD EMBEDDINGS

- Efficient estimation of word representations in vector space, 2013, Mikolov et al.
- Distributed representations of words and phrases and their compositionality, 2013, Mikolov et al.

WORD EMBEDDINGS

Numerical representations for words Respect semantic structure

Hundreds or thousands dimensional

Explaining how it works is beyond the scope of this talk

WORD2VEC SPACE PROJECTED INTO 2D

WORD2VEC ARITHMETIC (1/2)

```
# Gender
vec = model["king"] - model["man"] + model["woman"]
model.find_nearest(vec)
>>> "queen"
```


WORD2VEC ARITHMETIC (2/2)

```
# Composition

vec = model["human"] + model["robot"]

model.find_nearest(vec)

>>> "cyborg"
```

DOCUMENT EMBEDDINGS

Distributed representations of sentences and documents, 2014, Q. V. Le and T. Mikolov

DOCUMENT EMBEDDINGS

Same idea, applied to larger text pieces Allow semantical text comparisons

DOC2VEC SPACE PROJECTED INTO 2D

DOC2VEC ARITHMETIC

```
# Find similar text documents
vec = model["Distributed Representations of Words and " +
"Phrases and their Compositionality"]
model.find_nearest(vec)
>>> "Distributed representations of sentences and documents"
```

```
# Comparison
doc_1 = model["Annual Report 2012"]
doc_2 = model["Annual Report 2013"]
doc_3 = model["Annual Report 1990"]
similarity(doc_1, doc_2)
>>> 0.739
similarity(doc_1, doc_3)
>>> 0.357
```

COMBINED ARITHMETIC

Document embedding with paragraph vectors, 2014, Dai et al.

```
vec = model.docvecs["Lady Gaga"] - model["American"] + model["Japanese"]
model.docvecs.find_nearest(vec)
>>> "Ayumi Hamasaki"
```

Ayumi Hamasaki is one of the most famous pop singers in Japan She also has an album called "Poker Face", released in 1998

INITIAL IDEA

Given

vec = model.docvecs["Lady Gaga"] - model.docvecs["Ayumi Hamasaki"]

Can this be done?

model.infer_path(vec) // Can infer_path be implemented?
>>> {"American": -1, "Japanese": 1}

OUTLINE

IDEA
EXPERIMENT AND RESULTS
DISCUSSION
CONCLUSIONS

IDEA

FORMALIZATION

The goal is to find the smallest set of words W ($W \subseteq Vocabulary$) such that:

$$dist(dv(Y), dv(X) + \sum_{i=0}^{|W|} (-1)^n wv(W_i)) < \epsilon$$

$$n = egin{cases} 1 & ext{if } dist(dv(Y), dv(X) + wv(W_i)) > \ & dist(dv(Y), dv(X) - wv(W_i)) \ 0 & ext{otherwise} \end{cases}$$

EXPERIMENT AND RESULTS

ECONSTOR16 CORPUS

- Based on ZBW's open-access repository Econstor
- >100,000 documents from economics
- meta data: author, title, number of citations, domain expert assigned keywords
- 77% documents English, 19% German, 4% 20 different languages

ALGORITHMIC PROCEDURE (1/2)

Distance measure: Cosine similarity
100 and 600 dimensional document embeddings
Semi-automatic procedure

ALGORITHMIC PROCEDURE (2/2)

Given: Doc2Vec model, Vocabulary and two Documents

Compute difference Find word with highest similarity Add/subtract word and document Repeat

EXAMPLE: SAME AUTHOR

	Author	Title	Expert assigned Keywords
X	Hans- Werner Sinn	Pareto Optimality in the Extraction of Fossile Fuels and the Greenhouse Effect	global warming, resource extraction, Pareto optimality
Υ	Hans- Werner Sinn	EU Enlargement and the Future of the Welfare State	EU expansion, migration, labour market, welfare state

EU Enlargement and the Future of the Welfare State

+

Iteration	Vector added	Cos Similarity @600D
0		-0.01
1	stock	0.04
2	industrial	0.11
3	employee	0.12
4	fuel	0.15
5	diesel	0.19
6	non-statistical	0.20

EXAMPLE: DISTANT DOCUMENTS

	Author	Title	Expert assigned Keywords
X	Hendrik Hagedorn	In search of the marginal entrepreneur: Benchmarking regulatory frameworks in their effect on entrepreneurship	Benchmarking method, entrepreneurship, incentives, regulation
Υ	John Hartwick	Mining Gold for the Currency during the Pax Roman	Gold coinage, Roman money, roman empire

In search of the marginal entrepreneur: Benchmarking regulatory frameworks in their effect on entrepreneurship

-

Iteration	Vector added	Cos Similarity @100D
0		-0.44
1	job	-0.14
2	carbon	-0.12
3	empire	0.22
4	goldsmith	0.36
5	country	0.52
6	interest	0.61

TRANSFER RESULTS

100D → 600D

Iteration	Vector added	Cos Sim @600D	Cos Sim @100D
0		-0.03	-0.44
1	job	0.01	-0.14
2	carbon	0.03	-0.12
3	empire	0.10	0.22
4	goldsmith	0.007	0.36
5	country	0.007	0.52
6	interest	0.007	0.61

TRANSFER RESULTS

600D → 100D

Iteration	Vector added	Cos Sim @600D	Cos Sim @100D
0		-0.01	-0.44
1	stock	0.04	-0.30
2	industrial	0.11	-0.22
3	employee	0.12	-0.24
4	fuel	0.15	-0.20
5	diesel	0.19	-0.22
6	non-statistical	0.20	-0.18

DISCUSSION

RESULTS

- Although high initial distance, quick convergence @ 100D
- Higher dimensionality leads to slower convergence
- Most words are meaningful (like empire, goldsmith)
- Some words aren't obviously meaningful (like carbon, country)
- goldsmith isn't mentioned in either documents
- Results produced in different dimensionalities are not similar

OPTIMIZATIONS AND FUTURE WORK

- Clearing the corpus
- Comprehensive evaluation of the procedure
- ullet n-grams with n>1
- tf-idf weighting to retrieve more specific words
- Speed: Restricting vocabulary size
- Influence of the embedding dimensionality on the quality of results needs to investigated

APPLICATION (1/2)

On Wikipedia corpus:

Compare Enrico Fermi to James Clerk Maxwell

...formulate the classical theory of electromagnetic radiation...

Maxwell's religious beliefs and related activities...

...was a Scottish scientist...

APPLICATION (2/2)

On Econstor16 corpus:

I want to read paper X which builds on paper Y. Which parts of X should I focus on?

Paragraph 4

Paragraph 7

CONCLUSIONS

CONCLUSIONS

- A method explaining topical difference between documents was presented
- Intuitively suitable words are found by the method
- Optimizations to increase the accuracy suggested
- A new corpus was introduced:
 - https://github.com/n-witt/EconstorCorpus

END

n.witt@zbw.eu