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Introduction
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Context

The Ecosystem
Cross-vertical federated aggregated search in an uncooperative
setting for queries automatically extracted from an user’s context.

The Goal
Provide a solution for search engines that do not deal well with long,
multi-topic queries.
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Context
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Context

Federated Search
Meta search where for each query is forwarded a number of search
engines (also called sources), typically remotely located.

Uncooperative Setting
The search engines do not provide information and cannot be
tweaked, basically assumed to be black boxes.
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Context

Cross-Vertical Search
Combining results from different types of search engines, for
example combine textual search results with image search results.

Aggregated Search
Combine multiple search results into a single, consistent search
result list.
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Motivation

Context-Driven Query Extraction

– Queries are automatically generated
– … so that the user does not have to type in a query
– … instead, it is inferred from the user current context

– Just-In-Time Information Retrieval
– Close connection to Recommender Systems
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Motivation
Example

– A user is browsing theWikipedia
– Reading a paragraph of one of the articles
– Key terms from that very paragraph are extracted
– Sent to a search engine to gather results
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Motivation

Consequences

– A query might contain multiple parts
– …might cover different, unrelated aspects, i.e. multi-topic
– thus might reflect independent information needs

– Queries might be long
– … to alleviate to miss important terms
– Since the actual information need of the user cannot be always be

correctly determined

Note: Additionally in such scenarios, often the search result list also artificially
includes diversified and novelty.
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Motivation

Problem

– Some search engines do not fare well with multi-topic queries
– E.g. is the search engine only supports conjunction queries

⋆ …will yield empty search results most of the time

– Some search engines do not fare well with long queries
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Approach
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Proposed Approach

Topical query splitting:
1 Take a long query
2 Identify the coherent parts
3 Reformulate individual queries for each of these parts
4 Issue searches for each of the sub-queries
5 Combine the results into a consistent search result list
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State-of-the-Art

Main approaches to query splitting
1 Relevance feedback based

– Multiple requests to the search engines
– Initial search results are analysed

2 Use of query-logs
– Identify common sub-queries

... both approaches are not well suited for our setting (no access to query logs,
high latency, ...)
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Related Problems

Query Topic Detection
– Identify the (latent) topic(s) of the query

– Often uses query-logs

Query Segmentation
– Identify phrases and (multi term) named entities within a
multi-term query

– Recent approaches make use of external knowledge-bases
– For example:

⋆ [new york city griffith building]
⋆ [“new york city” “griffith building”]
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System Overview
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Method

Constraints on the query splitting
– Does not use relevance feedback or query-logs
– Works independent from the query extraction method

– … as it may change/evolve over time
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Proposed Method

Our query splittingmethod

1 Introduce a similarity function
– Allows to compute the pairwise similarity between query terms
– Makes use of a word embedding function

⋆ Transforms a word into a vector representation
⋆ Makes use of an external knowledge base

2 Apply a clustering algorithm
– Each cluster represents a single topic, i.e. sub-query
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Word Embedding Methods
Word2Vec
– Gained a lot of attention recently

– Makes use of neural networks

– Trained using the context of terms
– Requires training corpus

– Similar terms end up close to each other
– Even allows vector arithmetic in the projected space
– … can be used to answer questions like:
– “Athens is to Greece as Rome is to […]”

– We used the default parameters and the already provided
pre-trainedmodel

– Google news, 300 dimensions, 3 million words
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Word Embedding Methods

GloVe
– Conceptually similar to Word2Vec
– Optimises distances within the projected space

– Based on co-occurrence statistics

– Requires training corpus
– We used the default parameters and an pre-trainedmodel

– Merge of a Wikipedia dump (2014) and the English Gigaword corpus
(5th edition)
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Clustering Methods

k-Means
– Simple, but well performing clustering method
– Requires the number of clusters being specified in the
beginning

– Requires a distance/similarity function
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Evaluation
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Input Dataset

Base Dataset
– Webis-QSeC-10 training set

– Originally developed for query segmentation, not query splitting
– Need a strategy to evaluate query splitting

– Consists of 5000 queries extracted from query-logs
– … further annotated

– The dataset contains only a limited amount of named entities
– …well suited for our task
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Evaluation Dataset
Run #1

1 Select a number of topics
– Out of [2, 3, 4]

2 Pick corresponding many queries from the base dataset
3 Concatenate the queries into a single query

Run #2
1 [equal to run #1]
2 [equal to run #1]
3 Randomly construct a query from the query terms

Tasks
– Reconstruct the original queries
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The Baseline

Baseline Algorithm
– Split the query into equally long segments

– … according to the correct number of topics

– Very simple baseline

Evaluation Measures
– Rand Index
– V-Measure
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Results

Results for run #1 (V-Measure)

Algorithm 2 3 4

Baseline 0.77 0.78 0.79
Word2Vec 0.77 0.77 0.77
GloVe 0.79 0.81 0.78
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Results

Results for run #2 (V-Measure)

Algorithm 2 3 4

Baseline 0.28 0.27 0.24
Word2Vec 0.37 0.34 0.37
GloVe 0.43 0.48 0.50
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Discussion

– Surprisingly, GloVe consistently outperforms Word2Vec
– Baseline performs very well in run #1

– Due to the sub-queries being of similar length
– i.e. most errors are just off-by-one errors

– Performance should improve with training data sets close to the
domain

– Depends on the actual setting, if run #1 or run #2 resembles the
true behaviour
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Conclusion & Future Work

– Some form of query splitting necessary for certain search
engines

– But, should be combined with:
⋆ Query segmentation - to detect named entities and phrases
⋆ Algorithm to detect the number of topics, especially single topic

queries

– Additional information from query extraction could be beneficial as
well

– Open issues
– Evaluation of the aggregates search result
– In vivo evaluation of the whole system
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The End

Thank you for your attention!
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