
Temporal Social Network: Group Query Processing∗

Xiaoying Chen1 Chong Zhang2 Yanli Hu3 Bin Ge4 Weidong Xiao5

Science and Technology on Information Systems Engineering Laboratory
National University of Defense Technology, Changsha 410073, P.R.China

and
Collaborative Innovation Center of Geospatial Technology, China

{1chenxiaoying1991, 2leocheung8286}@yahoo.com 3smilelife1979@163.com
4gebin1978@gmail.com 5wilsonshaw@vip.sina.com

Abstract—With the development of on-line social networks,
more and more users and sellers are interested in group analytics
which provides insights into common interests with various
relationships. This paper addresses this problem from temporal
aspect, i.e., temporal group query (TGQ) which gives people the
historical view for group forming and changing. To efficiently
achieve our goal, we propose two structures to index temporal
social network (TSN), and then a simple naive searching method
is designed to process the TGQ, after that we argue a more
efficient approach can be implemented by update operations
instead of iterative graph generations, which we call optimized
method. We conduct experiments on real-synthetic dataset, and
the results show that our indexes and searching algorithms are
capable, and optimized method is much more efficient than the
naive one.

I. INTRODUCTION

Due to the increasing popularity of social networks and vast
amount of information in them, there have been many efforts
in enhancing web search based on social data. Social networks
contain data about the network, i.e., data about users and their
social relations, data about the activities that users participate
in. Besides the graph structure, another important dimension
of social network is dynamic attribute. For instance, logins
or logouts of a user represents changes in the users’ on-line
status. Also, new content is added through user activities (such
as posting text, photo) representing respective changes in the
users’ interests. This temporal aspect of information in social
network would influence social network query either explicitly
by enabling users to query for particular time points or periods,
or implicitly by providing the fresher results, e.g., find some
users who are active during a certain period, or find some
activities posted at some time. Such queries add temporal axis
to user requirement, we call it temporal social network query.

In our previous work, we introduced temporal social net-
work, and address three query types, namely Friends of
Interesting Activities (FIA) query, Users of Time Filter (UTF)
query and Group of Users with Relationship Duration (GURD)
query. In GURD query, it aims to find a set of groups, where
the number of users in each group is equal to a given number,
and average intimate degree – which is measured by average
relationship duration – of it satisfies a given value, and all the
members of it have taken part in some given activities. In this

∗This work is supported by NSF of China grant 61303062 and 61302144.

paper, we argue that GURD is not sufficient for analyzing the
changes of groups, which is an essential module for temporal
social networks analytics. Thus, we intend to extend GURD
query to a more generalized and applicable one to adapt more
temporal queries in real world. Here, we call it Temporal
Group Query (TGQ).

TGQ is essential, for instance, when the system analyst
would like to observe and analyze the formation and changes
of groups, historically. For example, they aim to find a set
of groups, each group with all member participating in the
activity labeled with ‘presidential election’ during last two
weeks, and average on-line duration is not less than 24 hours
during last two weeks. The result of this query should be
appropriately in the form: {< g1={u1, u2, . . . }, t1, t2>,
< . . . >, . . .}, where g1 is a satisfying group valid during
[t1, t2].

For efficiently answer TGQ query, we design two indexes,
one is called Temporal Activity tree (TA-tree) indexing par-
ticipating time and keywords’ activity , the other is Temporal
Friendship tree (TF-tree) indexing versions of relationships.
We first devise an approach naively iterate each relationship
changing time point, and construct the satisfying group. How-
ever, we argue that the naive method is not efficient, thus we
design a more efficient algorithm to accelerate the processing,
in particular, it is a series update operations to an initial graphs
and check which updated graph is satisfied. Due to less time
for constructing connected graph, it is more efficient than the
naive one. In this paper, we make the following contributions:

• We propose a more applicable query type, temporal group
query, to answer group query in temporal social network.

• We design two approaches to process TGQ, one is naive
iterative, the other is an optimized one.

• We conduct experiments on real-synthetic hybrid dataset,
and results show our method is efficient.

The rest of this paper is organized as follows. Related
works are surveyed in section 2. Problem is formally defined
in section 3. In section 4, two index TA-tree and TF-tree
are presented, followed by query processing in section 5. In
section 6, we carry out our experiments. Finally, section 7
concludes the paper with directions for future works.

II. RELATED WORKS

Some of the relevant works of temporal social network study
focus on efficient algorithms and data structure for searching
data. And some others propose some typical kinds of temporal-
social query that can be applied to life application. We have
proposed three kinds of queries, namely FIA, UTF and GURD
query in [1]. GURD query is a kind of temporal group query,
which aims to find a set of groups, where the number of users
in each group is equal to a given number, and average intimate
degree of it satisfies a given value, and all the members
of it have taken part in some given activities. We propose
two index structures, TUR-tree and TUA-tree for accelerating
query process. Algorithms of query processing for the three
queries are finally proposed.

There are many other works introduce many kinds of group
queries, such as [2], [3], [4]. Social-Temporal Group Query
(STGQ) [2], which considers the available time of candidate
attendees and their social relation, aims to find activity time
and attendees with minimum total distance to the initiator.
However, in STSG, the time dimension is only considered as
available time for attendees, which can be dealt with after
Social-Group Query (SGQ).

In the other hand, adding the spatial dimension into social
network would bring about different group queries. Socio-
Spatial Group Query (SSGQ) [3] finds a group of attendees
close to rally point and ensure that the selected attendees have
a good social relationship to create a good atmosphere in the
activity. There are many similar queries, for example, Circle of
Friends (CoF) [4] finds a group of friends whose members are
close to each other both socially and geographically. These two
query problem are both NP-hard (because social restrictions
diverse), but without time dimension.

As there are many kinds of temporal social network queries,
it is impossible to study all of them. So Kostas Stefanidis
et.al.[5] define a logical algebra that provides a set of oper-
ators required for temporal social network query evaluation.
However, this work only provides a logical algebra without
any storage model and query processing detail which is the
important factor to the effectiveness of this framework. As we
have introduced above, there are few previous studies consider
the efficient query processing in temporal social group query
in historical view.

III. PROBLEM DEFINITIONS

Given an undirected graph G=(V , E), V =U∪A. Each vertex
ui in U represents a user in the community and is associated
with a time interval [uts, ute), meaning the valid period during
which ui exists (or being logon status) in community, and [uts,
∗) means ui is still in the community now. For a given social
network graph G, there is also a set A⊂V , in this paper, we
use term activity to denote social event in the social network,
e.g., publishing a post, sharing a link and etc. Without loss
generality, each activity can be represented as < aid,Wa >,
where aid is the activity identifier, Wa is a keyword set to
describe the activity.

Each edge (vi, vj) in E has two forms: (ui, uj) and (ui, aj).
(ui, uj) represents a friend relationship between user ui and
uj , and it is also associated with a time interval [ets, ete), in
which ets means the time when the relationship is established
and ete means the time when the relationship is removed.

Each ui in G can connect to an activity ak in A, which
means that ui gets involved in ak, formed as (ui, ak). We use
term participation to describe relationship between user and
activity, e.g., in social network, user may post some texts, or
forward other’s post, or share a link of web page, or comment
other’s activity, or add some activity into favorite, in general,
we call these actions as participations.

u1

u2

u5

u3

u7

u4

(et1, et3)

u6

(et3, *) t1

(et5, *) (et6, *)(et4, *)

u10

a1

u9

(et2, *)

t2

t3

(ut3, ut5)

(ut1, *)

(ut10, *)

(ut2, *)

(ut4, *)

(ut5, *)

(ut9, *)

(ut7, *)

(ut6, ut9)

W1

W2

a2

t4

t5t6

Fig. 1. Temporal Social Network Example

Figure 1 illustrates a temporal social network, where users
and activities are plotted as dots and triangles, respectively.
The relationship are divided into two categories: user-to-user
(solid line) and user-to-activity (dashed line). And the label
on edge indicates time interval of relationship or time stamp
when a user participate in an activity. For instance, user u1

logins community at time ut1 and does not logout at current,
and user u1 and u2 become friends at et1 and unfriend each
other at et3, and u4, u7 and u2 participate in a2 at t4, t5 and
t6, respectively.

Then we formally give definition of TGQ, a TGQ (W ,
[ts, te], tol) aims to find a set of groups, in which, each
group is a connected graph, and all members have participated
in the activities with keywords in W during period [ts, te],
and the average on-line duration (AOD) (during [ts, te]) of
the members is not less tol. Here on-line duration (AOD) is
defined as:

AOD =

∑n
i=1 onlineduration(ui)

n
(1)

where n is the cardinality of the group, onlineduration(ui)
calculates on-line duration of user ui.

IV. INDEXES DESIGN AND FUNCTIONS

We believe that for a TGQ (W , [ts, te], tol), two kinds
of temporal predicates should be taken into consideration of
building indexes. One is the temporal predicate [ts, te] for
participation time, and the other is friendship valid period
predicate for generating groups with valid period. Thus, we
design two indexes to accelerate query processing. One index
is for finding which users participating in the activities with
keywords in W during [ts, te], and the other one aims to

process the query – given a time period, find pairs of users
who are friends during the period.

The first index we call it Temporal Activity tree (TA-tree),
which is actually a B+-tree injected with Bloom Filter[6]. In
particular, the data item (entry in leaf node) to be indexed is
in the form <ui, tp, ak,Wak

>, where ui is a user identifier, tp
represents the time user ui participates in activity ak, and Wak

is the keyword set describing ak. B+-tree is built according
to the key tp, and the keyword sets of all entries in each leaf
node constitute a Bloom Filter BF , and BF serves as filter
with pointers in internal nodes. Figure 2 illustrates an example
of TA-tree. We use a querying function to represent retrieval
function of TA-tree, R=TARetrv([ts, te], W), which means
to find user set R participating in the activities with keywords
in W during [ts, te].

t2BF1 BF3 t5 BF4

t3BF5 BF6

t3BF2

u1,t1,a1,
W1

u2,t2,a2,
W2

u3,t3,a3,
W3

u4,t4,a4,
W4

u5,t5,a5,
W5

u6,t6,a6,
W6

u7,t7,a7,
W7

Fig. 2. TA-Tree Example

The second index is Temporal Friendship tree (TF-tree),
which is a kind of MVB-tree[7], indexing the temporal friend
relationship. In particular, data item to be indexed is in the
form <ui|uj , [tf , tu]>, where ui|uj is concatenation of a
pair of friends serving as the search key, and [tf , tu] is the
valid friendship period of ui and uj . Thus, TF-tree’s function
is to find which pairs of users are valid friends during the
given time period, and the retrieval function can be represented
as R=TFRetrv([tf , tu]), which means to retrieve pairs of
friends associated with corresponding valid time period during
[tf , tu].

V. QUERY PROCESSING

In this section, we handle the query processing for TGQ.
First we propose a straightforward approach, after that, we
optimize it to improve the efficiency.

A. Naive Searching

For a TGQ (W , [ts, te], tol), the basic workflow is as
following: firstly, TA-tree is used to retrieve the user set (say
Uc) participating in the activities containing the keyword set
W during [ts, te], then for each candidate user ui in Uc,
sum of on-line duration during [ts, te] is calculated. Then, the
difficulty lies in how to return the satisfied group with valid
time period. Through observation, we get that the group’s valid
period depends on each relationship’s changing time, e.g., a
temporal interval for a relationship is [tf , tu], which would
contribute the valid period of the group. Thus we can use TF-
tree to retrieve all pairs of friends during [ts, te], say Fc, and
we can generate pairs of friends in Uc associated with valid
time period by intersecting Uc and Fc, after that, for each time

point when friendship change happens in Uc, we calculate the
satisfied snapshots of groups (i.e., connected graph), and then
form the results.

For accelerating the processing, we use a max-queue storing
users in Uc sorted by on-line duration, thus we can terminate
the loop as early as possible. In particular, on each time point
ti, we calculate a set of snapshot connected graph whose AOD
is larger than or equal to tol, i.e., top element utop of the max-
queue is popped and checked whether on-line duration is not
less than tol, if so, that is to say it is possible for finding a
satisfied connected graph containing utop, then a connected
graph Gti on time t is generated, and check whether AOD of
Gti is larger than or equal to tol, if so, Gti is a result, after
that, all users in Gti are removed from the queue, and next
top element is popped and the similar processing is continued.
Otherwise, i.e., on-line duration of utop is less than tol, which
means it is impossible to find a satisfied connected graph for
the elements following utop, so the loop for the queue is
terminated and processing is moved to the next time point.
Algorithm 1 presents the pseudo-code of naive searching.
Algorithm 1 Naive Searching
Input: q=(W , [ts, te], tol)
Output: Rlist
1: Uc=TARetrv([ts, te], W)
2: Q=generateQueue(Uc)
3: Fc=TFRetrv([ts, te])
4: TP=extractT imePoints(Fc, Uc)
5: for each tp ∈ TP do
6: replQ=Q
7: while replQ 6=φ do
8: u=dequeue(replQ)
9: if u.od≤tol then

10: CQ=geneCQ(u, tp)
11: if AOD(CQ)≤tol then
12: Rlist←(CQ, tp)
13: end if
14: else
15: break
16: end if
17: end while
18: end for
19: return Rlist

For example, after retrieving the users that satisfied the
keywords and time constristant, Uc={u1,u2,...,u15} is found,
and tol=300. The relationships between these users, Fc is
showed in Figure 3 with time interval tags. Meanwhile, a
timeline containing ti, and the sum of on-line duration of each
ui is also showed in this figure.

[0,*)

[0,*) [200,*)

[400,800)

[100,800)

[400,*) [500,*)

[10.*)[0,1100)
[20.*)

[500,*)

[0,800)
[0,*)

500300 900400 800

u6

u3

u8

u1

T=300

u2

u4

u7
u5

u9

u11

u10

u12

u13

u14

u15

u6 590

u9 450

u8 400

u1 390

u15 370

u2 300

u13 270

u12 230

u3 170

u4 160

u5 130

u7 100

u11 25

u10 10

u14 5

u6

u3

u10

u13

u15

Avg=382>300
g1={u6,u3,u10,u15,u13}

u 9 450

u 8 400

u 1 390

u 2 300

u 12 230

u 4 160

u 5 130

u 7 100

u 11 25

u 14 5

u8

u9

u11

Avg=291.7<300

u1 390

u2 300

u12 230

u4 160

u5 130

u7 100

u14 5

u2 300

u12 230

u4 160

u5 130

u7 100

u14 5

u 6 5 9 0

u 9 4 5 0

u 8 4 0 0

u 1 3 9 0

u 1 5 3 7 0

u 2 3 0 0

u 1 3 2 7 0

u 1 2 2 3 0

u 3 1 7 0

u 4 1 6 0

u 5 1 3 0

u 7 1 0 0

u 1 1 2 5

u 1 0 1 0

u 1 4 5

T=400

u6

u3

u10

u13

u15

Avg=261.6<300

u 9 4 5 0

u 8 4 0 0

u 1 3 9 0

u 2 3 0 0

u 12 2 3 0

u 5 1 3 0

u 7 1 0 0

u 11 2 5

u 14 5

u8

u9

u11

Avg=291.7<300

u1 390

u2 300

u12 230

u5 130

u7 100

u14 5

u2 300

u12 230

u5 130

u7 100

u14 5

u 6 5 9 0

u 9 4 5 0

u 8 4 0 0

u 1 3 9 0

u 1 5 3 7 0

u 2 3 0 0

u 1 3 2 7 0

u 1 2 2 3 0

u 3 1 7 0

u 4 1 6 0

u 5 1 3 0

u 7 1 0 0

u 1 1 2 5

u 1 0 1 0

u 1 4 5

u4

T=500

u6

u3

u10

u13

u15

u4

Avg=271.6<300

u1 390

u2 300

u12 230

u5 130

u7 100

u14 5

u11
u8

u9

u2 300

u12 230

u5 130

u7 100

T=800

u6

u3

u10

u15

Avg=331.6>300
g1={u6,u3,u10,u15,u9,u8}

u8

u9

u1

u1

u1

u14

Avg=197.5<300

u 1 390

u 2 3 0 0

u 13 2 7 0

u 12 2 3 0

u 4 1 6 0

u 5 1 3 0

u 7 1 0 0

u 11 2 5

u 14 5

u1

u14

Avg=197.5<300

u 2 300

u 13 270

u 12 230

u 4 160

u 5 130

u 7 100

u 11 25

u 6 5 9 0

u 9 4 5 0

u 8 4 0 0

u 1 3 9 0

u 1 5 3 7 0

u 2 3 0 0

u 1 3 2 7 0

u 1 2 2 3 0

u 3 1 7 0

u 4 1 6 0

u 5 1 3 0

u 7 1 0 0

u 1 1 2 5

u 1 0 1 0

u 1 4 5

u 6 5 9 0

u 9 4 5 0

u 8 4 0 0

u 1 3 9 0

u 1 5 3 7 0

u 2 3 0 0

u 1 3 2 7 0

u 1 2 2 3 0

u 3 1 7 0

u 4 1 6 0

u 5 1 3 0

u 7 1 0 0

u 1 1 2 5

u 1 0 1 0

u 1 4 5

Fig. 3. Example of TGQ

As shown in Figure 4, on time t1=300, utop = u6 (show
in bold), we form a connected graph for u6, and then check
that AOD=382>300, so we add it to the result list. And
then {u6, u3, u10, u15, u13} are removed. utop changes to u9,
we simply form a a connected graph for u9, and check
that AOD=291.7<300, this result does not satisfy. Until the
utop = u2, the on-line duration of u2=300, is not less than tol.
So the processing is jumped to the next time point t2=400. Due
to space limitations we do not show the processing at time 500
and 800.

[0,*)

[0,*) [200,*)

[400,800)

[100,800)

[400,*) [500,*)

[10.*)[0,1100)
[20.*)

[500,*)

[0,800)
[0,*)

500300 900400 800

u6

u3

u8

u1

T=300

u2

u4

u7
u5

u9

u11

u10

u12

u13

u14

u15

u6 590

u9 450

u8 400

u1 390

u15 370

u2 300

u13 270

u12 230

u3 170

u4 160

u5 130

u7 100

u11 25

u10 10

u14 5

u6

u3

u10

u13

u15

Avg=382>300
g1={u6,u3,u10,u15,u13}

u 9 450

u 8 400

u 1 390

u 2 300

u 12 230

u 4 160

u 5 130

u 7 100

u 11 25

u 14 5

u8

u9

u11

Avg=291.7<300

u1 390

u2 300

u12 230

u4 160

u5 130

u7 100

u14 5

u2 300

u12 230

u4 160

u5 130

u7 100

u14 5

u 6 5 9 0

u 9 4 5 0

u 8 4 0 0

u 1 3 9 0

u 1 5 3 7 0

u 2 3 0 0

u 1 3 2 7 0

u 1 2 2 3 0

u 3 1 7 0

u 4 1 6 0

u 5 1 3 0

u 7 1 0 0

u 1 1 2 5

u 1 0 1 0

u 1 4 5

T=400

u6

u3

u10

u13

u15

Avg=261.6<300

u 9 4 5 0

u 8 4 0 0

u 1 3 9 0

u 2 3 0 0

u 12 2 3 0

u 5 1 3 0

u 7 1 0 0

u 11 2 5

u 14 5

u8

u9

u11

Avg=291.7<300

u1 390

u2 300

u12 230

u5 130

u7 100

u14 5

u2 300

u12 230

u5 130

u7 100

u14 5

u 6 5 9 0

u 9 4 5 0

u 8 4 0 0

u 1 3 9 0

u 1 5 3 7 0

u 2 3 0 0

u 1 3 2 7 0

u 1 2 2 3 0

u 3 1 7 0

u 4 1 6 0

u 5 1 3 0

u 7 1 0 0

u 1 1 2 5

u 1 0 1 0

u 1 4 5

u4

T=500

u6

u3

u10

u13

u15

u4

Avg=271.6<300

u1 390

u2 300

u12 230

u5 130

u7 100

u14 5

u11
u8

u9

u2 300

u12 230

u5 130

u7 100

T=800

u6

u3

u10

u15

Avg=331.6>300
g1={u6,u3,u10,u15,u9,u8}

u8

u9

u1

u1

u1

u14

Avg=197.5<300

u 1 390

u 2 3 0 0

u 13 2 7 0

u 12 2 3 0

u 4 1 6 0

u 5 1 3 0

u 7 1 0 0

u 11 2 5

u 14 5

u1

u14

Avg=197.5<300

u 2 300

u 13 270

u 12 230

u 4 160

u 5 130

u 7 100

u 11 25

u 6 5 9 0

u 9 4 5 0

u 8 4 0 0

u 1 3 9 0

u 1 5 3 7 0

u 2 3 0 0

u 1 3 2 7 0

u 1 2 2 3 0

u 3 1 7 0

u 4 1 6 0

u 5 1 3 0

u 7 1 0 0

u 1 1 2 5

u 1 0 1 0

u 1 4 5

u 6 5 9 0

u 9 4 5 0

u 8 4 0 0

u 1 3 9 0

u 1 5 3 7 0

u 2 3 0 0

u 1 3 2 7 0

u 1 2 2 3 0

u 3 1 7 0

u 4 1 6 0

u 5 1 3 0

u 7 1 0 0

u 1 1 2 5

u 1 0 1 0

u 1 4 5

Fig. 4. Naive Searching Example

B. Optimized Processing
We optimize the naive searching in this section, through

observation, we can see that, it is not necessary to construct
connected graphs at each time point. On the contrary, all the
connected graphs can be constructed initially, and at each time
point, according to the changes of relationship, we update
the corresponding graph and make judgment whether it is a
satisfied group. In particular, we argue that the key techniques
lie in the update operations to connected graphs. On each time
point, there are one or more operations to previous connected
graphs, and we distinguish the following cases:

(1) Addition of relationship between nodes both in a con-
nected graph cg. For this case, no judgment need to make, i.e.,
the results are the same with the previous step.

(2) Addition of relationship between a node in a connected
graph and an isolating node inode. For such a case, a new
connected graph containing inode is generated, which should
be inspected whether it is a satisfied group, i.e., whether
average on-line duration is not less the given value.

(3) Addition of relationship between two isolating nodes.
For such a case, a new connected graph is formed, the
processing is the same with case (2).

(4) Addition of relationship between one node in a con-
nected graph and the other node in another connected graph.
For such a case, a new connected graph is formed, the
processing is the same with case (2).

(5) Removal of relationship between two nodes, resulting
no split in a connected graph. For this case, no judgment need

to make, and results are unchanged.
(6) Removal of relationship between two nodes, resulting

a connected graph split. For this case, the two emerging
connected graphs should both be inspected whether they are
still satisfied groups.

Unlike the naive searching, the optimized processing only
consider the changes of relationship in the graph, also take
Figure 3 as an example, the processing is shown in Figure
5. Firstly, we form connected graphs at t1=300. Then at
t2=400, the changes of relationship are addition of relationship
{u4,u13} (case 2) and {u3,u10} (case 1). Adding the relation-
ship {u3,u10} in case 1 have no effect on the previous step,
while adding the relationship {u4,u13}, a new connected graph
is formed. In this case, a new member u4 (on-line duration
is 160) is added to Gt1 in time 300 which results to AOD
changing and Gt1 is no longer the satisfied result. At t3=500,
the changes of relationship are establishment relationship
{u1,u14} (case 3) and {u9,u10} (case 4). At t4=800, the
changes of relationship are removal of relationship {u3,u10}
(case 5) and {u13,u15}, {u9,u11} (case 6).

VI. EXPERIMENTAL EVALUATION

We implement the indexes and processing algorithms,
and experimentally evaluate them on a synthetic-real-hybrid
dataset. Due to the fact that there is no real dataset contain-
ing temporal information on on-line status, relationship and
activity participation. Thus we have to synthetically generate
dataset based on some real datasets which contain partial
temporal attributes. Table I lists some properties of these
datasets. Datasets Users is generated according to the case
of YouTube, which owing 3,223,589 users. Then according
to birthday information of Users, we randomly produced the
login time list of each user, which forms the login dataset.
Datasets Relation is produced based on the real dataset1,
which contains 9,375,374 pairs of relation of YouTube. For
the dataset of Activity, firstly, we download the dataset about
food theme on GCZX server, formed in xml file of 25 classes
of Amazon commodities, 1759 review on the hotel and some
web crawling data, etc. Secondly, we extract the useful text
as part of the text of activity, and randomly generated users
who involved in this activity and the time participate in the
activities.

TABLE I
DATASET DESCRIPTION

Dataset Record number Data size

User 3,223,589 287M

Relation 9,375,374 5.53G

Login 3,223,589 2.45G

Activity 6,980,465 2.28G

We implement our algorithms in Java. To make comparison,
the naive searching approach is used as a baseline. We vary
the query parameters and at each testing point, 10 queries
are issued to collect the average results. The experiments are
conducted on a DELL server with Intel(R) Xeon(R) 2.40GHz

1http://konect.uni-koblenz.de/downloads/tsv/youtube-u-growth.tar.bz2

[0,*)

[0,*) [200,*)

[400,800)

[100,800)

[400,*) [500,*)

[10.*)[0,1100)
[20.*)

[500,*)

[0,800)
[0,*)

500300 900400 800

u6

u3

u8

u1

u2

u4

u7
u5

u9

u11

u10

u12

u13

u14

u15

u 6 5 9 0

u 9 4 5 0

u 8 4 0 0

u 1 3 9 0

u 1 5 3 7 0

u 2 3 0 0

u 1 3 2 7 0

u 1 2 2 3 0

u 3 1 7 0

u 4 1 6 0

u 5 1 3 0

u 7 1 0 0

u 1 1 2 5

u 1 0 1 0

u 1 4 5

T=300

u6

u3
u8

u1

u2

u4

u7

u5

u9

u11

u10

u12

u13

u14

u15

T=400 +(u4,u13)
+(u3,u10)

g1={u6,u3,u10,u15,u13}

u6

u3
u8

u1

u2

u4

u5

u9

u11

u10

u12

u13

u14

u15

T=500 +(u1,u14)
+(u9,u10)

u6

u3
u8

u1

u2

u4

u5

u9

u11

u10

u12

u13

u14

u15

u7 u7

T=800 -(u13,u15)
-(u3,u10)
-(u9,u11)

u6

u3
u8

u1

u2

u4

u5

u9

u11

u10

u12

u13

u14

u15

u7

g1={u6,u3,u10,u15,u9,u8}

Avg=382 Avg=291.7

Avg=190

Avg=216.6 Avg=271.6

Avg=190

Avg=291.7

Avg=197.5

Avg=331.6

Avg=197.5

Avg=190

Avg=215

Avg=190

Fig. 5. Optimized Processing Example

processor, 8GB memory and 500GB disk. Table II describes
the query parameters.

TABLE II
PARAMETERS IN EXPERIMENT

queries parameters domain defualt

TGQ

tol 1 - 5 3

Wq’s cardinality 1 - 5 3

length[ts,te]/temporal extent 0.1%-3% 1%

Firstly, we vary tol to compare the performances of two
algorithms. We increase tol from 1 to 5, while the response
time of query decreases (see Figure 6(a)), this is due to our
terminating condition, i.e., a larger tol will terminate loop
earlier, thus the processing delay is reduced. For the detail,
we can see the effectiveness of our optimization, i.e., the
optimized approach utilizes the updates to the graphs, which
reduces the simple repeated group forming procedure, thus it
cost less time to retrieve the results.

Next, we increase the number of querying keywords to test
performances. We can see from Figure 6(b), the response
time also increases with the number of keywords. This can
be explained that a larger number of keywords would involve
more tree nodes in the TA-tree to be traversed, thus more time
would be cost. Similarly, the optimized approach outperforms
the naive searching.

Figure 6(c) illustrates the results of varying parameter
time selectivity, a larger value causes more candidates to be
inspected, thus the response time increases correspondingly.
And still, the results show that a series of update operations
is more efficient than exhausted method.

VII. CONCLUSION

With applications continuously developing, more and more
temporal social network group queries will be paid attention.
In this paper, we focus on temporal analytics on social group
query, and argue Temporal Group Query (TGQ) is useful and
applicable. To efficiently address the query, we design two
indexing structures to accelerate the query processing, and two
processing algorithms, one is simple, the other is optimized, to
accomplish the processing. We conduct experiments on real-
synthetic hybrid dataset, and the results show our methods are
capable and optimized method is efficient. In the future, we
would like to study on social group query with geographic
attributes.

1 2 3 4 5

0

5000

10000

15000

20000

25000

30000

D
e

la
y(

m
s)

Average On-line Duration

 Naive

 Optimized

(a) Effect of tol

1 2 3 4 5

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

D
e

la
y(

m
s)

Number of Keywords

 Naive

 Optimized

(b) Effect of keywords

0.0 0.5 1.0 1.5 2.0 2.5 3.0

5000

10000

15000

20000

25000

30000

35000

D
e

la
y(

m
s)

Time Selectivity(%)

 Naive

 Optimized

(c) Effect of time selectivity

Fig. 6. Experimental Results

ACKNOWLEDGMENT

This work is supported by NSF of China grant 61303062
and 61302144. We would like to thank Prof. Dai and Dr. Hu
for helping with the proof.

REFERENCES

[1] X. Chen, C. Zhang, B. Ge, and W. Xiao, “Temporal social network:
Storage, indexing and query processing,” EDBT, 2016.

[2] D. N. Yang, Y. L. Chen, W. C. Lee, and M. S. Chen, “On social-
temporal group query with acquaintance constraint,” Proceedings of the
Vldb Endowment, vol. 4, no. 6, 2011.

[3] D. N. Yang, C. Y. Shen, W. C. Lee, and M. S. Chen, “On socio-spatial
group query for location-based social networks,” in Proceedings of the
18th ACM SIGKDD international conference on Knowledge discovery
and data mining, 2012, pp. 949–957.

[4] W. Liu, W. Sun, C. Chen, Y. Huang, Y. Jing, and K. Chen, “Circle
of friend query in geo-social networks,” in International Conference on
Database Systems for Advanced Applications, 2012, pp. 126–137.

[5] K. Stefanidis and G. Koloniari, “Enabling social search in time through
graphs,” in Proceedings of the 5th International Workshop on Web-scale
Knowledge Representation Retrieval & Reasoning, 2014, pp. 59–62.

[6] I. De Felipe, V. Hristidis, and N. Rishe, “Keyword search on spatial
databases,” in Data Engineering, 2008. ICDE 2008. IEEE 24th Interna-
tional Conference on. IEEE, 2008, pp. 656–665.

[7] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer, “An
asymptotically optimal multiversion b-tree,” The VLDB JournalThe Inter-
national Journal on Very Large Data Bases, vol. 5, no. 4, pp. 264–275,
1996.

