Efficient Search Result Diversification via Query Expansion Using Knowledge Bases

Raoul Rubien, Hermann Ziak, Roman Kern

Know-Center Graz

TIR, 2015-09-01

What? Research Questions

Background - What

Main research question

 Does query expansion help to increase the diversity of search results and to which extend?

Secondary research question

• What role does the query formulation play in this process?

Why? What are the implications?

Background - Why

What is the current state?

- Most of the current methods for diversification rearrange a long search result list
- By picking results, which match certain criteria via a cost function
- Thereby discarding a number of search results
- The computation of the cost function is often also computationally complex

What is then changed?

- Query expansion does not require to alter the search result list
- It is therefore far more efficient.

Context & System

What is our setting and how does our system work?

System - General

General background

- We are developing a vertical aggregated search system
- Where search engines are treated as black boxes
- Queries are automatically generated out of the current user's context
- Latency does play an important role

What did motivate us to work on this topic?

- Query expansion techniques are known to increase recall
- In literature we found some hints, that it also helps for diversity
- But no systematic comparison

System - Query Expansion

Query expansion strategy

- Our query expansion methods rely on pseudo relevance feedback
 - Take the original query
 - 2 Conduct a search and collect the results
 - Oreate a set of candidate terms out of the results
 - Rank the candidate terms and define cut-off point
 - 6 Add the top candidate terms to the query
- The expanded query is then submitted to the search engine

System - Query Expansion

Search the query expansion index

- Our system is capable to use different systems for pseudo relevance feedback and for searching
- Currently, we use an external knowledge base just for query expansion
- Specially build Wikipedia index
 - Split each Wikipedia article into paragraphs
 - Facets: title, paragraph title, paragraph content
- Allow partial matches, restrict to a number of search results

System - Query Expansion

Candidate selection

- Collect terms from all facets
- Rank the terms according to score s(t)
- Select the top k terms

$$s(t) = \sum_{i \in S} \sum_{f \in F} DFR(boost(f) * score(d_i))$$

System - Query Formulation

How is the final query being constructed?

- The way how the expansion terms are added to the query depends on the capabilities of the search engine
- We implemented two strategies
 - A simple baseline, disjunction of all terms

OrigQueryTerms OR $ExpTerm_1$ OR ... OR $ExpTerm_n$

2 The grouping method, expanded terms are grouped

OrigQueryTerms OR ($ExpTerm_1$ OR ... OR $ExpTerm_n$)

Evaluation

How did we obtain our results?

Evaluation - Overall Approach

Evaluation goals

- Measure the amount of diversification
- Secondary, compare the different query formulation strategies

Evaluation strategy

- Compute the search results without query expansion
- Compute search results using a state-of-the-art diversification technique
 - And compute the diversification against the unexpanded query
- Compute the search results with query expansion
 - And compute the diversification against the unexpanded query
- Ompare the amount of diversification b/w the two diversification strategies

Evaluation - Reference System

Comparison system

- Implemented a state-of-the-art diversification algorithm IA-Select (Intent Aware - Select)
 - Explicit diversification of search result
 - Requires a weighted mapping for the query to a classification scheme
 - Plus a weighted mapping of the results to the same classification scheme

Note: IA-Select is restricted to items from the original result list, while the search result list with the expanded query may contain many additional results.

Evaluation - Query Set

Query set for evaluation

- Collected queries from query logs
 - Including manually entered queries
 - Including automatically generated queries out of users' context
- Manually cleaned and removed duplicates
- Final set consists of 70 queries
- Assignment to categories conducted manually

Evaluation - Measure

Measure of diversity

- Means to measure the amount of of diversification
- NDCG-IA (Normalized Discounted Cumulative Gain Intent Aware)
- Modification of the NDCG measure
- Compares two search result lists (the unexpanded query is always taken as reference)
- Compute NDCG_IA@ $k(R_{IA}(q_i))$ and NDCG_IA@ $k(R_{QE}(q_i'))$ for all $q_i \in Q$

Results

The results of the evaluation and discussion

Results

Comparison of the amount of diversification

Results

Comparison of query formulation strategy

Strategy	Pearson's r	Spearman's rho	Kendall's tau
Simple	0.46	0.42	0.30
Grouped	0.59	0.55	0.41

Conclusions Summary & Outlook

Conclusions

Summary

- Query expansions tweak the search results to contain more diversity
 - → Both efficient and effective
- Number of query terms does play a role 10 a good starting point
- The actual query formulation strategy plays an even bigger role

Future work

 Investigate on more advanced query formulation strategies, e.g. weighting of terms

The End

Thank you for your attention!