Michal Rott, Petr Červa

Laboratory of Computer Speech Processing

4. 9. 2014

Idea of article clustering

Presumptions:

- A news article has only one main topic
- Topic is identified by combination of terms
- Documents with similar topic belong to same cluster

Problems:

- Ambiguous meaning of words
- Language inflection e.g.: Czech nouns 14 forms
- Author's creativity generates "noise"
- Similarity of articles

```
What is the concept?
```

Concepts are represented as patterns of words.

Author's selection of words generates a noise in word-concept relation.

The LSA solves task of reducing this noise.

Adopted LSA-based method

Idea: similar documents have similar concepts

Algorithm:

- Preprocess input documents
- Oreate term-document matrix A
- Generate concept space
- Reduce concept space
- S Extract vectors for documents from document matrix
- Create hierarchy of similarity of the documents

Creation of term-document matrix

term-document matrix A

Latent semantic analysis

$$U \qquad \Sigma \qquad V^{T}$$
$$A = \begin{bmatrix} \begin{bmatrix} & u_{1} & \\ & \vdots & \\ & & u_{m} & \end{bmatrix} \cdot \begin{bmatrix} \sigma_{1} & & \\ & \ddots & \\ & & & \sigma_{m} \end{bmatrix} \cdot \begin{bmatrix} v_{1} \end{bmatrix} \cdots \begin{bmatrix} v_{m} \end{bmatrix} \end{bmatrix}$$

 $\vec{u_1} \cdots \vec{u_m}$ are eigenvectors of AA^T $\sigma_1 \cdots \sigma_m$ are singular values of A^TA $\vec{v_1} \cdots \vec{v_m}$ are eigenvectors of AA^T

```
http://www.alglib.net/
```

Reduction of concept space

- Reduction during composition:
 - Lemmatisation
 - Remove stop words
 - Synonym replacement
 - Lemma occurrence threshold
- Low-rank approximation of concept space

Hierarchical clustering

initialization: every document is in its own centroid

- find the most similar centroids
- e merge them and calculate new centroid coordinates
- repeat step 1 and 2, until only one centroid exists
- G cut dendrogram on demanded number of clusters

optimal:

don't build the whole dendrogram stop condition:

- number of cluster reached
- distance of clusters is too height

Example — concept space

Lemmas	D1	D2	D3	D4	D5	D6	D7	D8	D9
průvodce	1					1			
investice	1	1	1	1	1	1	1	1	1
obchod	1		1						
zásoba	1		1					1	
hlupák		1						1	
kniha			1	1					
hodnota				1	1				
otec						1			1
bohatý						2			1
majetek							1		1
skutečný							1		1

term-document matrix A

 $SVD \rightarrow V_K^T$

D1	D2	D3	D4	D5	D6	D7	D8	D9
-0.42	-0.31	-0.36	-0.20	-0.18	-0.44	-0.18	-0.45	-0.30
0.05	0.32	0.21	0.03	0	-0.69	-0.04	0.49	-0.37
0.54	-0.55	0.50	0.10	0	-0.13	-0.06	-0.27	-0.22

Example — clustering

$C1 = \{D4, D5, D7\}$	D4: kniha, hodnota	D5: hodnota	Common: investice
	D7: majetek, skutečný		
$C2 = \{D1, D3\}$	D1: průvodce	D3: kniha	Common: investice, obchod, zásoba
$C3 = \{D2, D8\}$	D8: zásoba		Common: investice, hlupák
$C4 = \{D6, D9\}$	D6: průvodce	D9: majetek, skutečný	Common: investice, bohatý, otec

Metrics used

Count-based document similarity

- Euclidean distance
- Normalized Euclidean distance (Mahalanobis distance)
- Cosine similarity

Evaluation metrics:

Internal metrics

Silhouette =
$$\frac{1}{N} \sum_{i=1}^{N} \frac{n_i - c_i}{\max\{c_i, n_i\}}$$

Error Sum of Squares, Davies-Bouldin

• External matrics

Rand index =
$$\frac{TP+TN}{TP+FP+FN+TN}$$

Purity, F-measure, Jaccard index, etc.

- Comparison of similarity measures
- Perm-document matrix vs. document matrix
- Oimension reduction
- Influence of the preprocessing

Data description

Test sets:

- Query-based
 - 20 documents with key-phrase "Česká národní banka"
 - 5 clusters
 - 10 annotators created reference clusters
 - 194 words in average per document
- ② Category-based
 - 100 documents
 - 10 clusters
 - publisher category is used as cluster annotation
 - 151 words in average per document

Comparison of similarity measures

test set	query	-based	category-based		
	RI	SI	RI	SI	
reduction 80 %	2 dimensions		10 dimensions		
euclidean	0.565	0.691	0.235	-0.438	
norm. euclidean	0.543	-0.473	0.235	-0.438	
cosine	0.500	-0.645	0.733	-0.350	
reduction 50 %	7 dimensions		33 dimensions		
euclidean	0.429	0.764	0.233	-0.102	
norm. euclidean	0.431	-0.311	0.233	-0.216	
cosine	0.651	-0.230	0.752	-0.273	
reduction 20 %	13 dimensions		64 dimensions		
euclidean	0.446	0.449	0.235	0.115	
norm. euclidean	0.431	0.081	0.237	0.039	
cosine	0.635	-0.224	0.714	-0.163	

cosine similarity yields best results

Comparison of the use of A_K and V_K^T

Rand index	A _K	V ^T
query-based	0.621	0.635
category-based	0.624	0.714

matrix size	A _K	$V^{ au}$	
query-based	2762×20	7×20	
category-based	8556 imes 100	33 imes 100	

 ${\pmb V}^{{\mathcal T}}$ yields better results and takes less computation during similarity comparison

Experiment with dimension reduction

recommended reduction 70 - 20 % reduction 50 % is used in other experiments

Influence of the preprocessing module

Lemmatisation module: Hunspell (tested Hunspell, FMorph and our FST analyzer) Stop list: cca. 400 words, source: FST analyzer and Nanodictate modeling set Synonym substitution: 7443 different groups from Wiktionary and Thesaurus

test set	query-based (mean of RI)	category-based (RI)
original input text	0.610	0.752
preprocessed text	0.651	0.785

improvement caused by preprocessing 0.037 on average

Accuracy of human cluster annotations

Query-based dataset = 20 documents, 5 clusters, 10 annotators

	min RI	mean RI	max RI
query-based	0.816	0.871	0.908

- difference between mean of annotators RI and automatic method RI is 0.086
- minimum and maximum RI difference is 0.092

Investigation of Latent Semantic Analysis for Clustering of Czech News Articles Conclusion

Conclusion

Best found configuration:

- **V**^T matrix gives better results
- Reduction 30-70 % of sum of all singular values
- Cosine similarity yields
- Preproccesing of the text is not necessary, but useful

Future work:

- More documents generate better combination of weighted lemma occurrences generate vectors by LSI.
- expand to Slovak, Polish and Croatian language

Investigation of Latent Semantic Analysis for Clustering of Czech News Articles Final goal

News articles processing system

single-document summarization: TSD2013

It's done

Thank you for attention!