Learning to Rank under Tight Budget Constraints

Christian Pölitz

MMCI

4th of September, 2012

Outline

Introduction and problem description Framework and ranking model Costs of parts of a ranking Use as expected value of parts of a ranking Optimal ranking with budgets

Introduction and problem description

Framework and ranking model

Costs of parts of a ranking

Use as expected value of parts of a ranking

Optimal ranking with budgets

Problem

Given:

- Document corpus D and index
- Query $q = (t_1, \cdots, t_n)$ of n terms t_i
- Budget B and costs C

Task:

- Find top k documents for the query (Ranking model)
- ► Keep budget *B*, (i.e. all costs together are below B)

Costs

We assume that the calculation of the ranking costs a certain amount of effort:

- accessing and loading of the elements of an index
- processing the information from the index.

This costs

- access and processing time
- network traffic and energy consumption.

To reflect these efforts, we estimate costs for loading information from an index and processing the information by a ranking model.

- Load only partial information from the index and process only some parts of the ranking model.
- Estimate importance of parts of the index and ranking model
- Try to use an optimal combination of parts of the index and ranking model that budget is kept
- Parameterize the ranking model with respect to what needs to be loaded and what needs to be processed

Loading

Index (term postings)

$$L_t = \{\{pos_i^j\}, id_j | t = d_j[pos_i]\}$$

Additional information about documents length and corpus size

- Separate index list into blocks, that can be loaded independently
- Estimate use and costs of loading a block

Example of blocks

- Blocks sorted by impact (expected use for ranking)
- In the blocks, postings sorted by doc id (compression)

Processing

Ranking model as additive ensemble of base rankers F_r

$$score(q, d) = \sum_{r} F_r(S(q), d)$$
$$S(q) = \{q' | q' \subseteq 2^q\}$$

- Combine features to base rankers F_r to estimate the relevance of documents to a given query
- Calculate features from postings from index blocks and additional information about documents and corpus

Parameterization

Parameterized model with X parameter vector

$$score(q, d, X) = \sum_{r} F_r(S(q, d, X), d) \cdot X_r$$

 $S(q, d, X) = \{q' | q' \subseteq 2^q \land X_{q'}(d) = 1\}$

►
$$X_q(d) = X_{q,k}$$
 s.t. $d \in L_{q,k}$
► $X = (X_{t_i,k}, X_{t_i,t_{i+1},k}, X_r)$

Loading costs

$$costs_{l}(t_{i}t_{i+1}, X) = 0$$

$$costs_{l}(t_{i}, X) = \sum_{k} costs_{l}(t_{i}, k) \cdot X_{t_{i},k}$$

$$costs_{l}(t_{i,k}) = |L_{t_{i},k}| \cdot k_{l}$$
(1)

- Costs for using term t_i depends on the blocks to be loaded
- Since bigram t_it_{i+1} can only be used when terms t₁ and t_{i+1} are already loaded no further costs occur
- Costs for loading a block depends on its size and a constant

Processing costs

$$costs_{p}(F_{r}, X) = (k_{p} \cdot I(F_{r' \neq r}) + k_{r}) \cdot$$

$$\sum_{X_{t_{i}, t_{i+1}, k} = 1} (|L_{t_{i,k}}| + |L_{t_{i+1,k}}|) \cdot X_{r}$$

$$+ (k_{p} \cdot I(F_{r' \neq r}) + k_{r}) \cdot \sum_{X_{t_{i}, k} = 1} |L_{t_{i,k}}| \cdot X_{r}$$
(2)

- Costs of processing loaded blocks
- How many postings must be processed multiplied by a constant
- Iterate over postings from the blocks only once

Use

Given a query, different posting lists, resp. blocks, and different base rankers have different expected value for the final ranking.

- Some terms or bigrams are more important
- Not all blocks have equal expected value for the ranking
- Value for applying base rankers inherent different and depends on order of application

Expected use of loading

l

$$U(t_{i}, X) = \sum_{k} \delta_{k} \cdot X_{t_{i,k}}$$

$$+ U(t_{i}t_{i+1}) + U(t_{i-1}t_{i})$$

$$U(t_{i}t_{i+1}, X) = \sum_{k,k'} (\delta_{k} + \delta_{k'}) \cdot X_{t_{i,k}} \cdot X_{t_{i+1,k'}}$$
(3)

- ► Assume functional dependency δ_{k+1} = f(δ_k) with decreasing use for additionally load blocks
- Assume additive use when using two terms as bigram

Expected use of processing

$$U(F_r) = \epsilon_r \cdot \rho_t \tag{4}$$

- Each base ranker has expected use ϵ_r
- Use depends also on the position t when the ranker is applied
- \blacktriangleright We expect decreasing use when applying more and more rankers ρ_t

Optimal parameterization of ranking model

$$X = \operatorname{argmax}_{X'} \sum_{q' \in S(q), r} U(q', F_r, X') \cdot X'_r \cdot X'_{q'}$$
(5)
s.t.
$$\sum_{q' \in S(q)} \operatorname{costs}_l(q', X') + \sum_r \operatorname{costs}_c(F_r, X') \le B$$

- Knap-sack like approach
- Greedy optimization of benefit: <u>use</u> <u>costs</u>
- $U(q', F_r, X) = U(q', X) \cdot U(F_r)$

Find optimal use parameters

$$\operatorname{argmax}_{\delta,\epsilon,\rho} \frac{1}{|Q_{tr}|} \cdot \sum_{q \in Q_{tr}} \sum_{B} E(D, \operatorname{score}_{X(B)}(q, .)) \tag{6}$$

- Optimize ranking quality E over the parameters
- Use training data set Q_{tr} with labeled queries
- Linear search over parameter values

Related Approaches

- Cambazoglu et al. WSDM'10
- Wang et al. SIGIR'11

Results on WT10g

Figure: NDCG for different budget on the WT10g data set.

Results on .gov2

Table: Mean NDCG@20 and Precision@20 over all tested budgets. Error notes how many test queries could not actually end before the budget was exceeded. Bold numbers show best results for the data sets. *Shows significant improvements.

Data set	.Gov2: Topics 776 to 850		
Method	Error	NDCG	P20
Early	4%	54.35*	50.75*
exit			
Our	4%	55.39*	52.07*
method			

Conclusion

- Estimated use and costs of applying (parts of) a ranking model
- Defined search for optimal loading and application strategy as knap-sack optimization problem
- Learned use of parts of the ranking model by optimizing ranking quality
- Evaluated on a large benchmark collection

- Too many parameters
- Not directly applicable to more complex ranking models
- Does not work with (gradient) boosting

Thanks for your attention

Christian Pölitz Learning to Rank under Tight Budget Constraints