

Designing a Multi-Dimensional Space

for Hybrid Information Extraction (IE)

Christina Feilmayr, Klaudija Vojinovic, Birgit Pröll

Institute of Application Oriented Knowledge Processing, FAW

Christina Feilmayr, September 04 2012

Hybride

Overview

Overview

- Challenges in Information Extraction
- Motivating Hybrid Information Extraction (HybridIE)
- Fundamental Idea of Multi-Dimensional Space and HybridIE
- Scientific Findings, Project Modifications and Results
- Lessons Learned & Future Directions

- Common information extraction (IE) systems are imperfect
 - simple entity recognition: 90-98% correct results
 - template relation extraction: 50-60% correct results

- Common information extraction (IE) systems are imperfect
 - simple entity recognition: 90-98% correct results
 - template relation extraction: 50-60% correct results
- Developing an IE system is time- and labor intensive

- Common information extraction (IE) systems are imperfect
 - simple entity recognition: 90-98% correct results
 - template relation extraction: 50-60% correct results
- Developing an IE system is time- and labor intensive
 - KnowledgeBased (KB) IE: rules must be

- Common information extraction (IE) systems are imperfect
 - simple entity recognition: 90-98% correct results
 - template relation extraction: 50-60% correct results
- Developing an IE system is time- and labor intensive
 - KnowledgeBased (KB) IE: rules must be
 - sufficiently generic to extract the full extent of information

- Common information extraction (IE) systems are imperfect
 - simple entity recognition: 90-98% correct results
 - template relation extraction: 50-60% correct results
- Developing an IE system is time- and labor intensive
 - KnowledgeBased (KB) IE: rules must be
 - sufficiently generic to extract the full extent of information
 - sufficiently specific to extract relevant information

- Common information extraction (IE) systems are imperfect
 - simple entity recognition: 90-98% correct results
 - template relation extraction: 50-60% correct results
- Developing an IE system is time- and labor intensive
 - KnowledgeBased (KB) IE: rules must be
 - sufficiently generic to extract the full extent of information
 - sufficiently specific to extract relevant information
 - MachineLearned (ML) IE: requires

- Common information extraction (IE) systems are imperfect
 - simple entity recognition: 90-98% correct results
 - template relation extraction: 50-60% correct results
- Developing an IE system is time- and labor intensive
 - KnowledgeBased (KB) IE: rules must be
 - sufficiently generic to extract the full extent of information
 - sufficiently specific to extract relevant information
 - MachineLearned (ML) IE: requires
 - sufficiently large amount of training data

- Common information extraction (IE) systems are imperfect
 - simple entity recognition: 90-98% correct results
 - template relation extraction: 50-60% correct results
- Developing an IE system is time- and labor intensive
 - KnowledgeBased (KB) IE: rules must be
 - sufficiently generic to extract the full extent of information
 - sufficiently specific to extract relevant information
 - MachineLearned (ML) IE: requires
 - sufficiently large amount of training data
 - appropriate set of features

Possible solution is to combine KB and ML - hybrid IE, multi-strategy IE

- Possible solution is to combine KB and ML hybrid IE, multi-strategy IE
- Overall aim of research work
 - Developing methods and processes that enables a more precise IE
 - Methodology for selecting appropriate hybrid IE methods

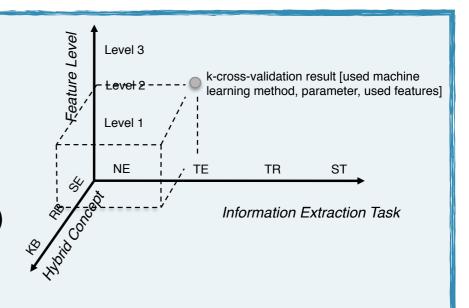
- Possible solution is to combine KB and ML hybrid IE, multi-strategy IE
- Overall aim of research work
 - Developing methods and processes that enables a more precise IE
 - Methodology for selecting appropriate hybrid IE methods
- Main Contributions
 - Concepts for hybrid methods and processes
 - Decision support for selecting hybrid methods (primarily multi-dimensional space, extended to evaluation matrix)
 - Test framework for two different application scenario (eRecruitment: analyzing a CV corpus, News: extracting data from Reuters corpus)

Multi-Dimensional Space

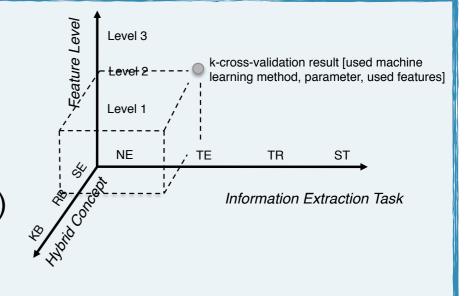
 Support IE system designers in selecting an appropriate method (ML, hybrid concept) for IE task

- Support IE system designers in selecting an appropriate method (ML, hybrid concept) for IE task
- Design of multi-dimensional space: three axes that indicates
 - IE task: NE, TE, TR, ST
 - hybrid concept: sequential extraction (SE),
 rule base extension (RB), knowledge base extension (KB)
 - granularity of used features (feature level)

- Support IE system designers in selecting an appropriate method (ML, hybrid concept) for IE task
- Design of multi-dimensional space: three axes that indicates
 - IE task: NE, TE, TR, ST
 - hybrid concept: sequential extraction (SE),rule base extension (RB), knowledge base extension (KB)
 - granularity of used features (feature level)

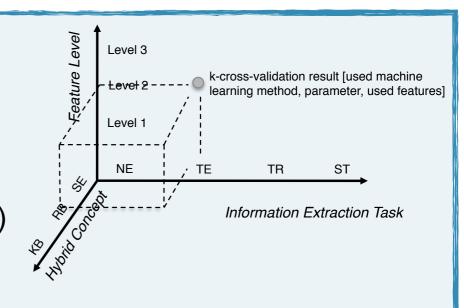


- Support IE system designers in selecting an appropriate method (ML, hybrid concept) for IE task
- Design of multi-dimensional space: three axes that indicates
 - IE task: NE, TE, TR, ST
 - hybrid concept: sequential extraction (SE),rule base extension (RB), knowledge base extension (KB)
 - granularity of used features (feature level)



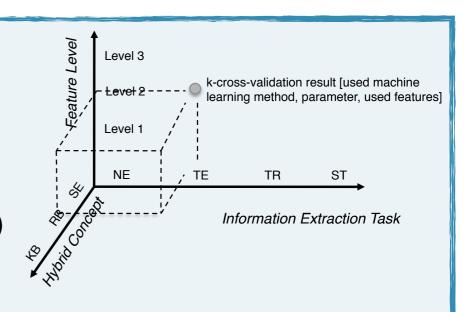
Results in a set of quintuples [h, fl, t, m, x] (data points in space), e.g.,

- Support IE system designers in selecting an appropriate method (ML, hybrid concept) for IE task
- Design of multi-dimensional space: three axes that indicates
 - IE task: NE, TE, TR, ST
 - hybrid concept: sequential extraction (SE),
 rule base extension (RB), knowledge base extension (KB)
 - granularity of used features (feature level)



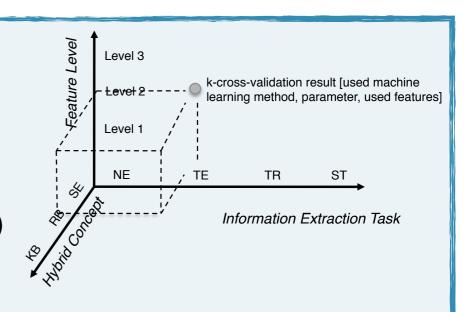
- Results in a set of quintuples [h, fl, t, m, x] (data points in space), e.g.,
 - [Sequential Extraction, Level2, TE, SVM, 0.87]

- Support IE system designers in selecting an appropriate method (ML, hybrid concept) for IE task
- Design of multi-dimensional space: three axes that indicates
 - IE task: NE, TE, TR, ST
 - hybrid concept: sequential extraction (SE),
 rule base extension (RB), knowledge base extension (KB)
 - granularity of used features (feature level)



- Results in a set of quintuples [h, fl, t, m, x] (data points in space), e.g.,
 - [Sequential Extraction, Level2, TE, SVM, 0.87]
 - [Sequential Extraction, Level2, TE, k-NN, 0.64]

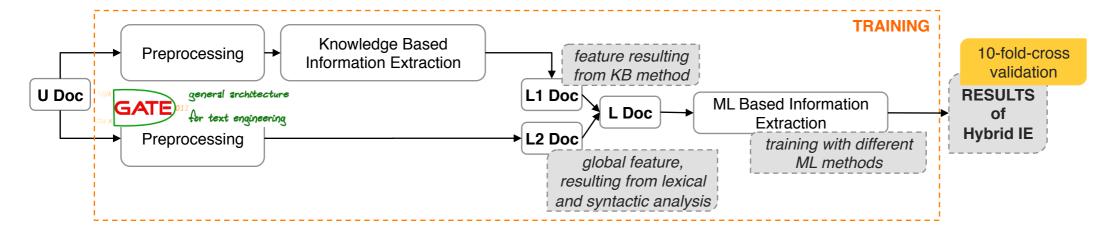
- Support IE system designers in selecting an appropriate method (ML, hybrid concept) for IE task
- Design of multi-dimensional space: three axes that indicates
 - IE task: NE, TE, TR, ST
 - hybrid concept: sequential extraction (SE),rule base extension (RB), knowledge base extension (KB)
 - granularity of used features (feature level)



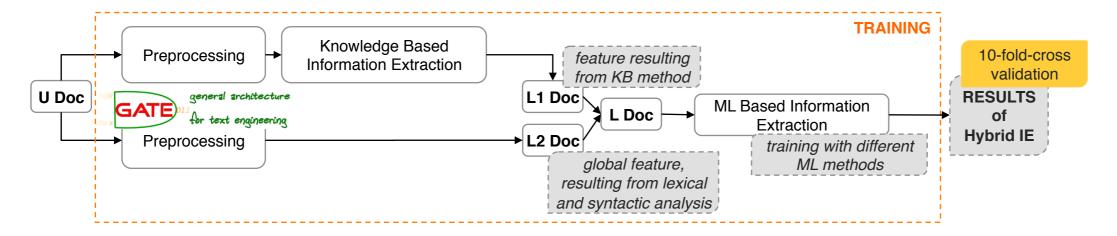
- Results in a set of quintuples [h, fl, t, m, x] (data points in space), e.g.,
 - [Sequential Extraction, Level2, TE, SVM, 0.87]
 - [Sequential Extraction, Level2, TE, k-NN, 0.64]
 - [Sequential Extraction, Level2, TE, CRF, 0.91]

Sequential extraction (SE)

Sequential extraction (SE)

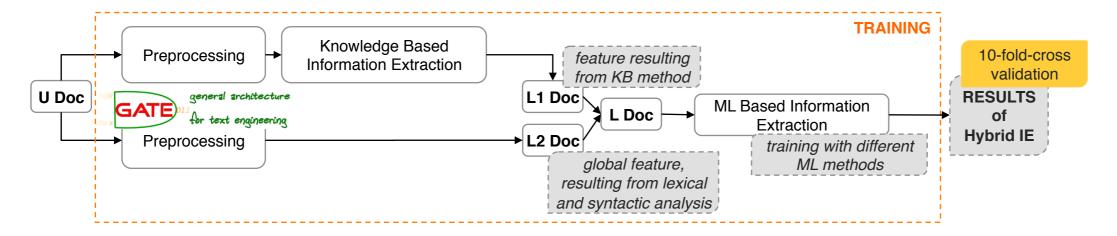


Sequential extraction (SE)

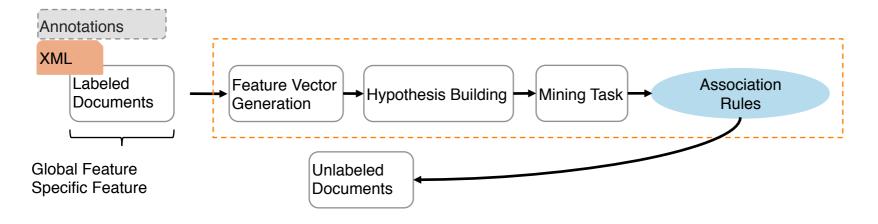


Rule base extension (RB)

Sequential extraction (SE)



Rule base extension (RB)

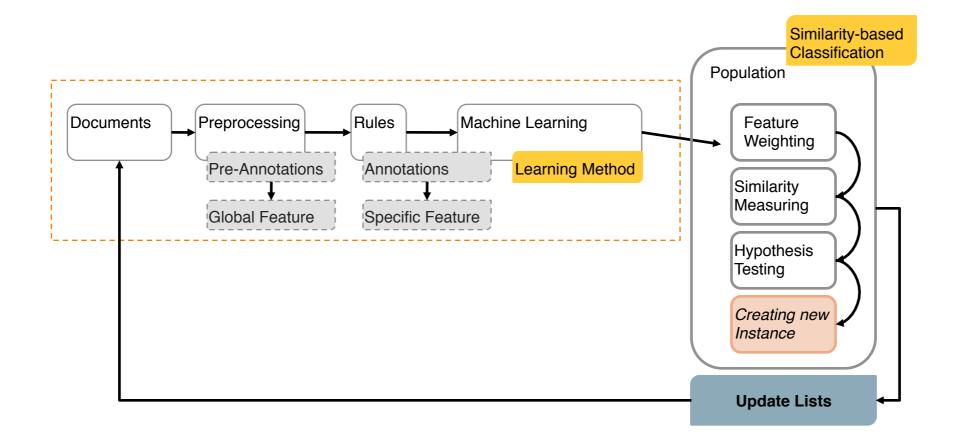


Concepts of HybridIE

Concepts of HybridIE

Knowledge base extension (KB)

Knowledge base extension (KB)



Intermediate Results of CV Extraction

Intermediate Results of CV Extraction

Data was preprocessed using

Intermediate Results of CV Extraction

- Data was preprocessed using
 - rule-based system (provided by industrial partner JoinVision)

Intermediate Results of CV Extraction

- Data was preprocessed using
 - rule-based system (provided by industrial partner JoinVision)
 - GATE, which provides the lexical syntactic features (for ML), and its BatchLearner

Intermediate Results of CV Extraction

- Data was preprocessed using
 - rule-based system (provided by industrial partner JoinVision)
 - **GATE**, which provides the lexical syntactic features (for ML), and its BatchLearner
 - MALLET API (for CRF)

Intermediate Results of CV Extraction

- Data was preprocessed using
 - rule-based system (provided by industrial partner JoinVision)
 - **GATE**, which provides the lexical syntactic features (for ML), and its BatchLearner
 - MALLET API (for CRF)

IE		PAUM			SVM			kNN			CRF		
TASK		P	R	F	P	R	F	P	R	F	P	R	F
SECTION IND- ICATOR	Results of KB	Precision (P) = 0.91 Recall (R) = 0.86 F1-measure (F) = 0.84											
	Level 1	0.81	0.65	0.72	0.76	0.70	0.72	0.32	0.27	0.29	0.78	0.62	0.69
	Level 2	0.91	0.90	0.91	0.93	0.87	0.90	0.75	0.43	0.54	0.99	0.99	0.99
	Level 3	0.99	0.92	0.95	0.99	0.91	0.95	0.74	0.36	0.48	1	0.99	_0.99_
PERSONS' NAME	Results of KB	Precision (P) = $0.86 \text{ Recall (R)} = 0.82 \text{ F1-measure (F)} = 0.84$											
	Level 1	0.55	0.59	0.57	0.56	0.59	0.57	0.39	0.53	0.44	0.68	0.71	0.68
	Level 2	0.94	0.78	0.85	0.96	0.80	0.87	0.82	0.64	0.71	0.98	_ 1 _	0.99
	Level 3	0.98	0.80	0.88	100	0.81	0.89	0.98	0.82	0.89	1	1	1
JOB TITLE	Results of KB	Precision (P) = 0.93 Recall (R) = 0.94 F1-measure (F) = 0.93											
	Level 1	0.52	0.42	0.46	0.58	0.43	0.49	0.24	0.14	0.17	0.64	0.66	0.65
	Level 2	0.56	0.44	0.49	0.56	0.46	0.50	0.17	0.08	0.11	0.69	0.69	0.69
	Level 3	0.86	0.84	0.85	0.84	0.80	0.82	0.74	0.44	0.55	0.99	_ 1 _	_0.99_
ADDRESS	Results of KB	Precision (P) = $0.86 \text{ Recall (R)} = 0.75 \text{ F1-measure (F)} = 0.79$											
	Level 1	0.57	0.50	0.51	0.50	0.51	0.50	0.54	0.43	0.47	0.64	0.59	0.61
	Level 2	0.72	0.68	0.69	8 9.72	0.70	0.70	0.57	0.48	0.50	0.76	0.82	0.79
	Level 3	0.95	0.95	0.95	0.98	0.98	0.98	0.67	0.54	0.59	1	0.99	0.99

September 04 2012

- Identification of criteria for analyzing ML methods with respect to their appropriateness for hybrid IE
 - evaluation matrix
 - support for user to identify appropriate ML methods for defined hybrid IE use case

- Identification of criteria for analyzing ML methods with respect to their appropriateness for hybrid IE
 - evaluation matrix
 - support for user to identify appropriate ML methods for defined hybrid IE use case
- Dynamic/static criteria (domain-dependent, -independent)

- Identification of criteria for analyzing ML methods with respect to their appropriateness for hybrid IE
 - evaluation matrix
 - support for user to identify appropriate ML methods for defined hybrid IE use case
- Dynamic/static criteria (domain-dependent, -independent)
 - Characterization of data set: size of data set, language of documents, balance of +/-

- Identification of criteria for analyzing ML methods with respect to their appropriateness for hybrid IE
 - evaluation matrix
 - support for user to identify appropriate ML methods for defined hybrid IE use case
- Dynamic/static criteria (domain-dependent, -independent)
 - Characterization of data set: size of data set, language of documents, balance of +/-
 - Characterization of ML method: kind of classification, impact of imbalanced data set, feature selection

- Identification of criteria for analyzing ML methods with respect to their appropriateness for hybrid IE
 - evaluation matrix
 - support for user to identify appropriate ML methods for defined hybrid IE use case
- Dynamic/static criteria (domain-dependent, -independent)
 - Characterization of data set: size of data set, language of documents, balance of +/-
 - Characterization of ML method: kind of classification, impact of imbalanced data set, feature selection
 - Fitness of ML method (i.r.t hybrid IE): single/multi class learning, correlations, identification/ avoidance of errors

- Challenge of imbalanced data set → sampler
 - removing negative examples, duplication of positive example
 - random over-/undersampling, context (random) undersampler,WEKA sampler removeFrequentValues

- Challenge of imbalanced data set → sampler
 - removing negative examples, duplication of positive example
 - random over-/undersampling, context (random) undersampler,WEKA sampler
 removeFrequentValues
- Challenge of insufficient amount of training data → semi-supervised ML
 - self-training, co-training, active learning

- Challenge of imbalanced data set → sampler
 - removing negative examples, duplication of positive example
 - random over-/undersampling, context (random) undersampler,WEKA sampler
 removeFrequentValues
- Challenge of insufficient amount of training data → semi-supervised ML
 - self-training, co-training, active learning
- GATE-Plugin for semi-supervised learning and sampling

- Challenge of imbalanced data set → sampler
 - removing negative examples, duplication of positive example
 - random over-/undersampling, context (random) undersampler,WEKA sampler
 removeFrequentValues
- Challenge of insufficient amount of training data → semi-supervised ML
 - self-training, co-training, active learning
- GATE-Plugin for semi-supervised learning and sampling
- Best results (+3-5%)
 - Sampler: context undersampler
 - Semi-supervised approach: <u>self-training (SVM)</u>, co-training (PAUM, SVM), active
 learning (2x SVM)

Summarization of Project Results

• In general hybrid IE considerably performs better

- In general hybrid IE considerably performs better
 - KB+CRF best (GATE-Plugin for statistical methods)

- In general hybrid IE considerably performs better
 - KB+CRF best (GATE-Plugin for statistical methods)
 - Semi-supervised approaches and sampling supplementary improve hybrid IE results

- In general hybrid IE considerably performs better
 - KB+CRF best (GATE-Plugin for statistical methods)
 - Semi-supervised approaches and sampling supplementary improve hybrid IE results
- Hybrid IE provides a correction of KB-annotated results

- In general hybrid IE considerably performs better
 - KB+CRF best (GATE-Plugin for statistical methods)
 - Semi-supervised approaches and sampling supplementary improve hybrid IE results
- Hybrid IE provides a correction of KB-annotated results

... BUT ...

- In general hybrid IE considerably performs better
 - KB+CRF best (GATE-Plugin for statistical methods)
 - Semi-supervised approaches and sampling supplementary improve hybrid IE results
- Hybrid IE provides a correction of KB-annotated results

... BUT ...

Selection of ML methods for hybrid IE is a non-trivial task

- In general hybrid IE considerably performs better
 - KB+CRF best (GATE-Plugin for statistical methods)
 - Semi-supervised approaches and sampling supplementary improve hybrid IE results
- Hybrid IE provides a correction of KB-annotated results

... BUT ...

- Selection of ML methods for hybrid IE is a non-trivial task
- There is no standard solution, which methods perform best in all hybrid IE use cases

- In general hybrid IE considerably performs better
 - KB+CRF best (GATE-Plugin for statistical methods)
 - Semi-supervised approaches and sampling supplementary improve hybrid IE results
- Hybrid IE provides a correction of KB-annotated results

... BUT ...

- Selection of ML methods for hybrid IE is a non-trivial task
- There is no standard solution, which methods perform best in all hybrid IE use cases
- Evaluation matrix is one possible support for IE system developer

- Identification of methods that overcome a specific IE challenge
 - main challenges of IE: ambiguity, imprecision, incompleteness, inconsistency, uncertainty and reliability

- Identification of methods that overcome a specific IE challenge
 - main challenges of IE: ambiguity, imprecision, incompleteness, inconsistency, uncertainty and reliability
- Challenges in case of incompleteness
 - incomplete/missing attribute-value pairs, incomplete/missing constraints and conditions
 - missing analysis of descriptive information (analysis of context information)

- Identification of methods that overcome a specific IE challenge
 - main challenges of IE: ambiguity, imprecision, incompleteness, inconsistency, uncertainty and reliability
- Challenges in case of incompleteness
 - incomplete/missing attribute-value pairs, incomplete/missing constraints and conditions
 - missing analysis of descriptive information (analysis of context information)
- Approach to overcome incompleteness

- Identification of methods that overcome a specific IE challenge
 - main challenges of IE: ambiguity, imprecision, incompleteness, inconsistency, uncertainty and reliability
- Challenges in case of incompleteness
 - incomplete/missing attribute-value pairs, incomplete/missing constraints and conditions
 - missing analysis of descriptive information (analysis of context information)
- Approach to overcome incompleteness
 - identification of incompleteness' characteristics

- Identification of methods that overcome a specific IE challenge
 - main challenges of IE: ambiguity, imprecision, incompleteness, inconsistency, uncertainty and reliability
- Challenges in case of incompleteness
 - incomplete/missing attribute-value pairs, incomplete/missing constraints and conditions
 - missing analysis of descriptive information (analysis of context information)
- Approach to overcome incompleteness
 - identification of incompleteness' characteristics
 - selection of methods (text-/data mining), which are appropriate to overcome incompleteness

- Identification of methods that overcome a specific IE challenge
 - main challenges of IE: ambiguity, imprecision, incompleteness, inconsistency, uncertainty and reliability
- Challenges in case of incompleteness
 - incomplete/missing attribute-value pairs, incomplete/missing constraints and conditions
 - missing analysis of descriptive information (analysis of context information)
- Approach to overcome incompleteness
 - identification of incompleteness' characteristics
 - selection of methods (text-/data mining), which are appropriate to overcome incompleteness
 - recommendation model (domain-dependent/independent)

- Identification of methods that overcome a specific IE challenge
 - main challenges of IE: ambiguity, imprecision, incompleteness, inconsistency, uncertainty and reliability
- Challenges in case of incompleteness
 - incomplete/missing attribute-value pairs, incomplete/missing constraints and conditions
 - missing analysis of descriptive information (analysis of context information)

- Identification of methods that overcome a specific IE challenge
 - main challenges of IE: ambiguity, imprecision, incompleteness, inconsistency, uncertainty and reliability
- Challenges in case of incompleteness
 - incomplete/missing attribute-value pairs, incomplete/missing constraints and conditions
 - missing analysis of descriptive information (analysis of context information)

Text Mining supported Information Extraction (TEMsIE)

... talk about "Characterization & Resolution of Incompleteness in (WWW) Information Extraction"

WebS2012 Workshop@DEXA (Sept., 05 2012, 10am)

- 2

7

Christina Feilmayr

Johannes Kepler University Linz | AUSTRIA

cfeilmayr@faw.jku.at

http://www.faw.jku.at