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Challenges in Information Extraction

«  Common information extraction (IE) systems are imperfect

— simple entity recognition: 90-98% correct results

— template relation extraction: 50-60% correct results

* Developing an |IE system is time- and labor intensive

— KnowledgeBased (KB) IE: rules must be

» sufficiently generic to extract the full extent of information

» sufficiently specific to extract relevant information

— MachineLearned (ML) IE: requires

» sufficiently large amount of training data

» appropriate set of features
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o Overall aim of research work

— Developing methods and processes that enables a more precise IE
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Motivating Hybrid Information Extraction

* Possible solution is to combine KB and ML - hybrid IE, multi-strategy IE

- — —

“» Qverall aim of research work

 Main Contributions

— Concepts for hybrid methods and processes

— Decision support for selecting hybrid methods (primarily multi-dimensional space,

extended to evaluation matrix)

— Test framework for two different application scenario (eRecruitment: analyzing a CV

corpus, News: extracting data from Reuters corpus)

FA w 4 Christina Feilmayr, September 04 2012



Designing a Multi-Dimensional Space for HybridlE || APPROACH

Multi-Dimensional Space

FA w 5 Christina Feilmayr, September 04 2012



Designing a Multi-Dimensional Space for HybridlE || APPROACH

Multi-Dimensional Space

« Support IE system designers in selecting an appropriate method (ML, hybrid

concept) for |IE task

FA w 5 Christina Feilmayr, September 04 2012



Designing a Multi-Dimensional Space for HybridlE || APPROACH

Multi-Dimensional Space

« Support IE system designers in selecting an appropriate method (ML, hybrid

concept) for |IE task

—— e — —— e —

| . Deéign of multi-dimensional space: three axes that indicé{es

| — IE task: NE, TE, TR, ST

— hybrid concept: sequential extraction (SE),

rule base extension (RB), knowledge base extension (KB)

— granularity of used features (feature level)

— - — —— S

FA w 5 Christina Feilmayr, September 04 2012



Designing a Multi-Dimensional Space for HybridlE || APPROACH

Multi-Dimensional Space

« Support IE system designers in selecting an appropriate method (ML, hybrid

concept) for |IE task

. Deéign of multi-dimensional space: three axes that indicates

_ T —

0O k-cross-validation result [used machine

| — |E task: NE, TE, TR, ST

! \Egature Level
h]
M
3
[\

— hybrid concept: sequential extraction (SE), |

1
v s TE TR ST

rule base extension (RB), knowledge base extension (KB)  ¢/¢§ Information Extraction Task

— granularity of used features (feature level)

—

i

FA w 5 Christina Feilmayr, September 04 2012

., learning method, parameter, used features]
/




Designing a Multi-Dimensional Space for HybridlE || APPROACH

Multi-Dimensional Space

« Support IE system designers in selecting an appropriate method (ML, hybrid

concept) for |IE task

. Deéign of multi-dimengional space: three axes that indicé{es

——— — s

k-cross-validation result [used machine
----- @ oo
., learning method, parameter, used features]
/7

— IE task: NE, TE, TR, ST

! \Egature Level
h]
M
3
[\

— hybrid concept: sequential extraction (SE), |

1
v s TE TR ST

rule base extension (RB), knowledge base extension (KB)  ¢/¢§ Information Extraction Task

— granularity of used features (feature level)

FA w 5 Christina Feilmayr, September 04 2012



Designing a Multi-Dimensional Space for HybridlE || APPROACH

Multi-Dimensional Space

« Support IE system designers in selecting an appropriate method (ML, hybrid

concept) for |IE task

. Deéign of multi-dimengional space: three axes that indicé{es

k-cross-validation result [used machine
----- @ oo
., learning method, parameter, used features]
/7

— IE task: NE, TE, TR, ST

! \Egature Level |
h]
M
3
[\

— hybrid concept: sequential extraction (SE), e e TR st
S L/ >
. . Y A : .
rule base extension (RB), knowledge base extension (KB) Q@Oo&,@ Information Extraction Task
&/ &
L
— granularity of used features (feature level) 2

—

— —_———

- Results in a set of quintuples [(nh, f1, t, m, x] (data points in space), e.g.,

— [Sequential Extraction, Level?2, TE, SVM, 0.87]

FA w 5 Christina Feilmayr, September 04 2012



Designing a Multi-Dimensional Space for HybridlE || APPROACH

|

Multi-Dimensional Space

« Support IE system designers in selecting an appropriate method (ML, hybrid

concept) for |IE task

. Deéign of multi-dimen;ional space: three axes that indicé{es

% Level 3
g | Levets - -- 0O :<-cro_ss-valid:tion result [used macfhine
S IE task NE, TE, TR, ST L%/' . learning method, parameter, used features]
Level 1
. . S R (
— hybrid concept: sequential extraction (SE), e e TR st
2 Vs >
: . AL . .
rule base extension (RB), knowledge base extension (KB) Qg’oo&@ Information Extraction Task
&/ &
Q

— granularity of used features (feature level) 2

—

— _———————————————

- Results in a set of quintuples [(nh, f1, t, m, x] (data points in space), e.g.,
— [Sequential Extraction, Level?2, TE, SVM, 0.87]

— [Sequential Extraction, Level?Z2, TE, k-NN, 0.64]

FA w 5 Christina Feilmayr, September 04 2012



Designing a Multi-Dimensional Space for HybridlE || APPROACH

|

Multi-Dimensional Space

« Support IE system designers in selecting an appropriate method (ML, hybrid

concept) for |IE task

. Deéign of multi-dimen;ional space: three axes that indicé{es

k-cross-validation result [used machine
----- @ oo
., learning method, parameter, used features]
/7

— IE task: NE, TE, TR, ST

! ‘fgature Level |
h]
M
3
[\

— hybrid concept: sequential extraction (SE), e b e TR st
S L/ >
. . Y A : .
rule base extension (RB), knowledge base extension (KB) Qg’oo&@ Information Extraction Task
&/ &
L
— granularity of used features (feature level) 2

—

— _———————————————

- Results in a set of quintuples [(nh, f1, t, m, x] (data points in space), e.g.,
— [Sequential Extraction, Level?2, TE, SVM, 0.87]
— [Sequential Extraction, Level?Z2, TE, k-NN, 0.64]

— [Sequential Extraction, Level?2, TE, CRF, 0.91]
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 Knowledge base extension (KB)
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Intermediate Results of CV Extraction

- Data was preprocessed using
— rule-based system (provided by industrial partner JoinVision)

— GATE, which provides the lexical syntactic features (for ML), and its BatchLearner

— MALLET API (for CRF)

1IE PAUM SVM kNN
TASK P R|] F| P]R]JF|PIR]F
z o Results of KB Precision (P) = 0.91 Recall (R) = 0.86 F1-measure
g A 8 Level 1 0.81 0.65 0.72 0.76 | 0.70 0.72 0.32 0.27 0.29 0.78  0.62 0.69
Q&S Level 2 091 [ 090 | 091 | 093 | 0.87 | 0.90 | 0.75 | 043 | 0.54 [FUEEE L] (L
wnn L]
Level 3 099 | 092 | 095 099 | 091 | 095 | 0.74 | 036 | 0.48 | 099 0.99_
0 Results of KB Precision (P) = 0.86 Recall (R) = 0.82 F1-measure
A= Level | 0.55 [ 059 | 057 [ 056 [ 059 | 057 | 039 | 0.53 | 044 [RUEEZRRUET
E > Level 2 094 | 078 | 0.85 ] 096 | 0.80 | 087 | 0.82 | 0.64 | 0.71 [FIREEIS ST
2 Level 3 0.98 0.80 0.88 100 0.81 0.89 | 0.98 0.82 0.89
= Results of KB Precision (P) = 0.93 Recall (R) = 0.94 F1-measure
= Level 1 0.52 0.42 0.46 0.58 0.43 0.49 | 0.24 0.14 0.17 0.64 0.66 0.65
H
= Level 2 056 | 044 | 049 | 056 | 046 | 050 | 0.17 | 0.08 | 0.11 |FUEZIP TP
= Level 3 086 | 084 | 085 084 | 080 | 0.82 | 0.74 | 044 | 0.55 |FLEL | 0.99
" Results of KB Precision (P) = 0.86 Recall (R) = 0.75 F1-measure
é’ Level 1 057 | 050 | 051 ] 050 | 051 | 050 | 054 | 043 | 047 [FEESERECTEIN T
2 Level 2 072 | 068 | 069 | &72 | 070 | 0.70 | 0.57 | 048 | 0.50 |FU R L)
2 8 September 04 2012
Level 3 0.95 0.95 0.95 0.98 0.98 0.98 0.67 0.54 0.59 1 099 0.99
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Evaluation Matrix for Hybrid IE

* ldentification of criteria for analyzing ML methods with respect to their
appropriateness for hybrid |IE
— evaluation matrix

— support for user to identify appropriate ML methods for defined hybrid |IE use case

« Dynamic/static criteria (domain-dependent, -independent)

— Characterization of data set: size of data set, language of documents, balance of +/-

— Characterization of ML method: kind of classification, impact of imbalanced data set, feature

selection

— Fitness of ML method (i.r.t hybrid |IE): single/multi class learning, correlations, identification/

avoidance of errors
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« Challenge of imbalanced data set — sampler

— removing negative examples, duplication of positive example

— random over-/undersampling, context (random) undersampler, WEKA sampler

removeFrequentValues

« Challenge of insufficient amount of training data — semi-supervised ML

— self-training, co-training, active learning
* GATE-Plugin for semi-supervised learning and sampling

- Best results (+3-5%)

— Sampler: context undersampler

— Semi-supervised approach: self-training (SVM), co-training (PAUM, SVM), active
learning (2x SVM)

FA w 10 Christina Feilmayr, September 04 2012



Designing a Multi-Dimensional Space for HybridIE || RESULTS

Summarization of Project Results

FA w 11 Christina Feilmayr, September 04 2012



Designing a Multi-Dimensional Space for HybridIlE || RESULTS

Summarization of Project Results

* In general hybrid IE considerably performs better

FA w 11 Christina Feilmayr, September 04 2012



Designing a Multi-Dimensional Space for HybridIlE || RESULTS

Summarization of Project Results

* In general hybrid IE considerably performs better

— KB+CRF best (GATE-Plugin for statistical methods)

FA w 11 Christina Feilmayr, September 04 2012



Designing a Multi-Dimensional Space for HybridIlE || RESULTS

Summarization of Project Results

* In general hybrid IE considerably performs better

— KB+CRF best (GATE-Plugin for statistical methods)

— Semi-supervised approaches and sampling supplementary improve hybrid |IE results

FA w 11 Christina Feilmayr, September 04 2012



Designing a Multi-Dimensional Space for HybridIlE || RESULTS

Summarization of Project Results

* In general hybrid IE considerably performs better

— KB+CRF best (GATE-Plugin for statistical methods)

— Semi-supervised approaches and sampling supplementary improve hybrid |IE results

- Hybrid |IE provides a correction of KB-annotated results

FA w 11 Christina Feilmayr, September 04 2012



Designing a Multi-Dimensional Space for HybridIlE || RESULTS

Summarization of Project Results

* In general hybrid IE considerably performs better

— KB+CRF best (GATE-Plugin for statistical methods)

— Semi-supervised approaches and sampling supplementary improve hybrid |IE results

- Hybrid |IE provides a correction of KB-annotated results

FA w 11 Christina Feilmayr, September 04 2012



Designing a Multi-Dimensional Space for HybridIlE || RESULTS

Summarization of Project Results

* In general hybrid IE considerably performs better

— KB+CRF best (GATE-Plugin for statistical methods)

— Semi-supervised approaches and sampling supplementary improve hybrid |IE results

- Hybrid |IE provides a correction of KB-annotated results

+ Selection of ML methods for hybrid IE is a non-trivial task

FA w 11 Christina Feilmayr, September 04 2012



Designing a Multi-Dimensional Space for HybridIlE || RESULTS

Summarization of Project Results

* In general hybrid IE considerably performs better

— KB+CRF best (GATE-Plugin for statistical methods)

— Semi-supervised approaches and sampling supplementary improve hybrid |IE results

- Hybrid |IE provides a correction of KB-annotated results

+ Selection of ML methods for hybrid IE is a non-trivial task

* There is no standard solution, which methods perform best in all hybrid IE use

Cases

FA w 1 Christina Feilmayr, September 04 2012



Designing a Multi-Dimensional Space for HybridIlE || RESULTS

Summarization of Project Results

* In general hybrid IE considerably performs better

— KB+CRF best (GATE-Plugin for statistical methods)

— Semi-supervised approaches and sampling supplementary improve hybrid |IE results

- Hybrid |IE provides a correction of KB-annotated results

+ Selection of ML methods for hybrid IE is a non-trivial task

* There is no standard solution, which methods perform best in all hybrid IE use

Cases

- Evaluation matrix is one possible support for IE system developer
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* Identification of methods that overcome a specific IE challenge

— main challenges of IE: ambiguity, imprecision, incompleteness, inconsistency,

uncertainty and reliability

+ Challenges in case of incompleteness
— incomplete/missing attribute-value pairs, incomplete/missing constraints and conditions
— missing analysis of descriptive information (analysis of context information)

» Approach to overcome incompleteness

— identification of incompleteness’ characteristics

— selection of methods (text-/data mining), which are appropriate to overcome

incompleteness
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— main challenges of IE: ambiguity, imprecision, incompleteness, inconsistency,

uncertainty and reliability

+ Challenges in case of incompleteness

— incomplete/missing attribute-value pairs, incomplete/missing constraints and conditions

— missing analysis of descriptive information (analysis of context information)

» Approach to overcome incompleteness

— identification of incompleteness’ characteristics

— selection of methods (text-/data mining), which are appropriate to overcome

incompleteness

— recommendation model (domain-dependent/independent)
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| Text Mining supported Information Extraction (TEMsIE)

‘\ ... talk about ,Characterization & Resolution of Incompleteness in (WWW) Information Extraction®

|
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