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Abstract—This paper introduces a budget-aware learning to
rank approach that limits the cost for evaluating a ranking
model, with a focus on very tight budgets that do not allow to
fully evaluate at least for one time all documents for each term.
In contrast to existing work on budget-aware learning to rank,
our model allows to only partially evaluate parts of the ranking
model for the most promising documents. In contrast to existing
work on top-k retrieval, we generate an execution plan before
the actual query processing starts, eliminating the need for
expensive in-memory accumulator management. We consider
a unified cost model that integrates loading and processing
cost. An extensive evaluation with a standard benchmark
collection shows that our method outperforms other budget-
aware methods under tight budgets in terms of result quality.
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I. INTRODUCTION

Search engines have become an important tool for the
retrieval of information. A user with an complex information
need expresses it as keyword query, and the search engine
uses a possibly complex ranking model to retrieve the best
documents that are most likely to satisfy the user. This is
usually implemented by precomputing per-term information
and storing it in inverted lists (or posting lists), containing
postings that denote in which documents the term occurs,
and at which positions. At query processing time, informa-
tion from these lists is first loaded to memory (if it does not
already reside there), and then fed into a ranking function
that computes a score for each document (later also noted
as ranker), which expresses an estimation for the relevance
of that document. A number of different ranking functions
have been proposed, from simple tf-idf models to recent
learning-to-rank approaches.

An important observation is that most of the state-of-the-
art learning-to-rank methods use computationally expensive
models and ensembles of single models. For instance the
most successful contributions of the 2010 Yahoo! Learning
to Rank Challenge use ensembles of tree based models
(see Chapelle et al. [5]). These models compute scores
for documents given a query to estimate the relevance of
a document by many computationally expensive models
leading to an even more expensive calculation of the whole
ensemble.

Since computing scores for all documents with complex
models is usually too expensive even when indexes are in

memory (and even more when they need to be loaded from
disk), a number of evaluation algorithms exist that aim at
limiting the execution effort to find the best documents. Such
dynamic pruning or top-k algorithms [14], [7] consider a
fixed scoring function and only a subset of all postings. In
general, two classes of such algorithms exist: while the first
class consumes postings in expected order of importance
(e.g., using precomputed scores [6] or impacts [1], [10]),
the second class dynamically skips postings based on score
estimates [3]. Efficient evaluation of learning-to-rank models
has not been equally well studied so far. Current state-of-
the-art approaches are described in [4] and [12]. Further,
precomputing all score values would be expensive that
standard top-k methods cannot be applied.

The problem gets an additional twist when the cost for
processing a query (e.g., measured in terms of time or disk
accesses) is limited by a fixed budget, requiring to find
the best possible (not necessarily the best overall) results
within the given budget. The vast majority of retrieval
algorithms are budget-oblivious, optimizing only for finding
the best overall results. Only a few budget-aware algorithms
have been proposed. Shmueli-Scheuer et al. [9] extended
a standard top-k algorithm with scheduling heuristics to
optimize quality of intermediate results. Wang et al. [13]
introduced budget-awareness for learning-to-rank methods,
optimizing parameters for varying budgets. To keep budgets
at runtime, their approach evaluates only a subset of all
features on all documents. Pölitz et al. [8] extended the
approach by Wang et al. to evaluate not only subsets of
features but also subsets of documents.

We propose a joint optimization framework that, given a
cost budget and precomputed posting lists, decides which
postings to read and how to evaluate them. Compared to
budget-aware, top-k algorithms, we can exclude processing
that do not contribute much to result quality, saving ex-
ecuting cost. Compared to budget-aware learning to rank,
we can exclude postings that are unlikely to belong to the
final result, again saving execution cost. This is especially
useful under tight budget constraints that do not allow to
fully evaluate all documents for all terms, an important case
not considered by Wang et al. [13].

First we introduce a cost model with two components,
loading and computational costs. While the former measures



the effort for loading postings, the latter measures the effort
to compute the ranking. Our optimization framework uses a
joint model of loading and processing costs and estimates
the usefulness of loading postings and processing them. We
define logical dependencies for processing different parts of
the ranking method. By this we can reasonably calculate
the costs of using certain parts exclusively in order to keep
given budgets. We parameterize a ranking model with the
most important postings and score calculations that can be
used while keeping the budgets.

II. RELATED WORK

The problem of assigning a fixed budget for the execution
of a ranking while expecting good retrieval quality has re-
cently emerged in information retrieval. We distinguish two
main approaches. First, heuristics based models that pose
assumptions about the distributions of relevant information
and their influence on the ranking process. Second, learning-
to-rank based models that try to learn the optimal model over
training data.

As a heuristic approach Shmueli-Scheuer et al. [9] de-
scribe a budget aware top-k algorithm. They define an
accesses plan on sorted index lists, hence lists of evaluated
posting information, used for a top-k query processing. This
plan is limited on its number of accesses by a given budget.
To find the best plan they assume that large list values at
the beginning increase the possibility to find the top-k results
early. Later on, strongly decreasing values help to determine
the final top-k result set faster. The idea to find an optimal
access plan to minimize the accesses on index lists was
already introduced by Bast et al. [2]. The authors estimate
the score distribution over precomputed index lists. Based
on this they distribute the accesses among the lists. This
approach does not provide the best results for a given budget
of accesses, it minimizes only the number of accesses.

Cambazoglu et al. [4] propose to selectively put prun-
ing/filter functions (early exit functions) between ranker
(boosted decision trees) in an additive ensemble (or chain)
of rankers. In the chain of the execution of rankers they
place filter functions to reduce the number of document
candidates on the fly. After each early exit function the
number of document candidates is reduced and the following
rankers need less execution time. The approach can be
extended to be budget aware. The early exit functions can be
parameterized and placed in such a way that their execution
time is restricted to a given budget.

Wang et al. use learning-to-rank methods to leverage rank-
ing methods in favor either for ranking quality or execution
time. While in [11] they explored the trade-off between
efficiency and effectiveness, hence quality and run time,
in [13] they learn a model that retrieves optimal ranking
results under a given budget. Only the most important
features for the ranking are used in order to keep a given
budget. The importances are learned from a training set. The

disadvantage of their proposed method is that they exclude
whole features and whole terms in order to keep a budget.
By this they possibly toss important information under very
tight budgets. Wang et al. [12] introduce a cascade of pairs
of pruning functions and weak rankers. The cascade applies
successively document pruning and features (BM25 and
Dirichlet) to produce a final set of top k documents for a
given query. The weak rankers are placed in increasing order
of their complexity that the most complex ones need only to
process a small set of documents due to the many previous
prunings. The construction of the cascade is learned form
training data by optimizing a trade off measure of efficiency
and effectiveness.

[4] and [12] do not comply to very tight budgets if we
cannot even load all necessary data at the beginning.

The differences of our work to these related works are
the following, (1) we can explicitly distinguish between
loading and processing costs. Most notable (2) we are
able to perform optimal rankings w.r.t. quality under very
tight budgets. Finally (3) our model complies to modern
efficiently implemented ranking methods.

III. SCORING MODEL

We use an additive ensemble of base rankers (see Equation
1) to find the best ranking of documents for a given
query. These base rankers Fi(q, .) express how good the
query matches a document d. Examples of base rankers are
gradient boosted decision trees as in [4] or single features
as in [12]. Every base ranker estimates the relevance of the
document to the query. They are applied to subsets S(q)
of terms from the query q. The concrete used subsets for
a given query q are terms and consecutive term pairs. We
note q′ ∈ S(q) with q′ = ti for terms and q′ = titi+1 for
bigrams.

score(q, d) =
∑

Fj(S(q), d) (1)

IV. PARAMETERIZATION

The goal of our method is to perform a ranking with the
above introduced model that is able to consider a budget
constraint. Adhoc, we decide which parts of the model shall
be used for the current ranking task. There are three main
components of our model. First the base rankers, second
the subsets of the query that are used and the documents.
For these components we introduce a set of binary variables
X that are used to restrict the model to those parts of the
components having the corresponding variable set to one.
For the base rankers there are the variables Xj . Further each
subset q′ ⊆ q is associated with the variable Xq′(d). These
variables additionally depend on the documents d. This
means setting Xj = 1 initializes the model to (additionally)
use base ranker j or Xq′(d) = 1 to evaluate document d for
the subset q′. Equation 2 shows the parameterized version
of our above introduce ranking model. Depending in the
variables, the model uses base rankers on subsets of the



query to estimated the relevance of the document for the
query.

score(q, d,X) =
∑

Fj(S(q, d,X), d) ·Xj (2)

S(q, d,X) = {q′|q′ ⊆ 2q ∧Xq′(d) = 1}
V. DATA STRUCTURES

From the parameterized ranking model as defined in Equa-
tion 2 we need to process all subsets S(q, d) and estimate the
relevance for documents d. For the terms ti this is done by
processing positional information which are stored in posting
lists Lti . The lists Lti contain, for each document containing
ti, its document id and the list of positions where the term
appears. We do not precompute posting lists for bigrams
titi+1, but process all the postings of the contained terms
ti, ti+1 and use the positional information to detect bigram
cooccurrences.

We separate the postings of a term into classes w.r.t.
loading effort and importance of documents. The importance
of a document is estimated by its impact, similar to [1].
We separate impact ordered posting lists into disjoint partial
lists Lti,k, resp. blocks. Within these blocks the postings
are sorted by document id, resulting in better compression.
This results in separately loadable partial posting lists. The
logical variables are extended to Xti,k expressing that for
term ti only postings from class k shall be used. For bigrams
titi+1, posting class Ltiti+1,k,k′ corresponds to all bigram
postings that can be constructed from positional information
in posting classes Lti,k and Lti+1,k′ .

VI. DOCUMENTS AND POSTINGS SELECTION

To reduce processing and loading effort we want to use
only a subset of documents from the posting lists for the
relevance estimation. Using the introduced posting classes
we define the usefulness of the documents in these classes
and the costs to expect when loading them.

A. Usefulness
We define the usefulness of a term ti of the query

as inverse document frequency IDF (ti) . We denote the
importance of posting class k as δk ·IDF (ti). The parameter
δ represents the weight of a posting class. Additionally,
since a bigram uses two terms ti and ti+1 restricted to
posting class k for ti and k′ for ti+1, the importance
of the corresponding posting classes for the bigram is
δkk′ · IDF (titi+1). This introduces additional parameters
δ which have to be set optimally. Later we will explain
how to find optimal values for all parameters. We define the
usefulness U(q′) of subquery q′ when using certain posting
classes for terms and bigrams in Equation 3.

U(ti, X) =
∑
k

δk · IDF (ti) ·Xti,k (3)

+ U(titi+1) + U(ti−1ti)

U(titi+1, X) =
∑
k,k′

δkk′ · IDF (titi+1) ·Xti,k ·Xti+1,k′

From the definition of the usefulness we can see that using
a bigram will start giving use when we will also use posting
classes of the contained terms. Further using a term is more
useful when additionally using terms to form a bigram. In
this case we add the usefulness of the corresponding bigrams
to the usefulness of the term.

B. Costs

The cost of using a postings class is set to the number of
postings to be loaded, hence those being in the correspond-
ing classes to be used, multiplied by a constant factor kl.
The factor kl is used as measure for the effort of loading
one posting. Generally we distribute the costs in a top down
manner as described in Equation 4. For bigram no loading
costs occur since they use already loaded term posting lists.

costsl(titi+1, X) = 0 (4)

costsl(ti, X) =
∑
k

costsl(ti, k) ·Xti,k

costsl(ti,k) = |Lti,k| · kl

VII. BASE RANKER SELECTION

The base rankers for our ranking model as described
above depend on the subsets they are applied to and also
on each other. For each loaded document and each term, the
final score is calculated in one shot. This means we perform
a document-at-a-time processing during a join on the posting
lists. For bigrams, positional information for the contained
terms must be traversed once to compute cooccurances and
the score.

A. Usefulness

The usefulness of a ranker consists of two parts. The
weights ε and a decay parameter ρ of the base rankers
indicating their usefulness. The more ranker we apply to
a document the less influence on the usefulness is to
expect. Hence, the quality of the ranking results will only
slightly increase when using additional base rankers. The
decay parameter reduces the usefulness of the base ranker
depending how many other base ranker (t−1) are placed in
the ensemble before it (see Equation 5).

U(Fj) = εj · ρt (5)

B. Costs

The processing of the documents by the rankers imposes
computational costs. There are two aspects to be considered.
First, each term, postings must be traversed to process it.
Second, for each base ranker to be applied, some additional
processing cost is needed. Hence at each step in the traversal
of the postings a constant kp for processing the current
posting and constant kr for applying the ranker on the
current posting is added to the costs. For bigrams, we
only need to consider traversing the postings of two terms.
This results in nonlinear costs from the first to the second



application of a ranker on the same document, from the
second on the costs are linear. The definition is given in
Equation 6.

costsp(Fj , X) = (kp · I(Fj′ 6=j) + kr) · (6)∑
Xti,ti+1,k

=1

(|Lti,k |+ |Lti+1,k
|) ·Xj

+ (kp · I(Fj′ 6=j) + kr) ·
∑

Xti,k=1

|Lti,k | ·Xj

The function I returns one if any other ranker is already
set to be used. In this case only the costs for applying the
ranker j occur, no costs for the processing of the postings
is further charged.

VIII. UNIFIED MODEL

Assuming a budget B restricting the run time. We need to
optimally distribute the budget on loading and processing.
Consequently the usefulness and the costs of using posting
classes and rankers must be combined, see Equation 7.

cost(Lq′ , Fj , X) = costsl(Lq′ , X) + costsp(Fj , X) (7)

The usefulness of a posting class of a term and the applica-
tion of a ranker can be simply expressed as product of their
individual usefulness as defined in Equation 8.

U(q′, Fj) = U(q′, X) · U(Fj) (8)

To build a unified model as claimed in the beginning we need
to be able to restrict both the loading and the computational
costs w.r.t. to a given budget B. This means we need a
combined optimization to find the optimal posting classes
to be loaded and the optimal rankers to be applied w.r.t. the
budget. We can formulate an optimization task using loading
and computational costs while utilizing the dependencies
among the subsets and the rankers, see Equation 9. To
force that bigrams can only be used when the corresponding
terms are used as well, we introduce the additional constraint
Xtiti+1 = Xti ·Xti+1 .

X = argmaxX′

∑
q′∈S(q),j

U(q′, Fj) ·Xj ·Xq′ (9)

s.t.
∑

q′∈S(q)

costsl(q
′, X ′) +

∑
j

costsc(Fj , X
′) ≤ B

To solve this optimization problem we use a greedy al-
gorithm that continuously adds currently most useful base
rankers or posting classes from a candidate set.

A. Optimal model parameters

As stated above our ranking model depends on many
parameters. The weights of the posting classes, the weights
of the base rankers and the decay factor. In order to set them
optimally we learn them by solving an optimization problem.
We use a given training data set containing documents D, a
set of queries Qtr and relevance information telling which

documents are relevant for the individual queries and which
not. Based on the relevance information an evaluation metric
measures how good the ranking. This means we look for
those parameter values that maximize an evaluation metric
E over a training set of queries Qtr for budgets B. We
follow the approach by Wang et al. [13] and use a line search
optimization to solve Equation 10.

argmaxε,ω,δ,ρ
1

|Qtr|
·
∑

q∈Qtr

∑
B

E(D, scoreX(B)(q, .)) (10)

IX. EXPERIMENTS

We implemented and applied our approach to the TREC
.Gov2 data set from the TREC Terabyte track, with topics
701-850, as well as TREC WT10g data set, with topics 451-
550 (using titles only). The parameters ω, ε, δ and ρ of the
ranking model are learned by maximizing the Mean Average
Precision on topics 701 to 775 for .Gov2 and topics 451 to
500 for WT10g. All tests are done on the remaining topics
776 to 850, resp. 551 to 600.

For training and testing we used budgets on the time in
ms. We restricted all our tests to budgets up to 1000 ms
for the .Gov2 data and up to 80 ms for the WT10g data.
Further we used 10 posting classes. All significant test were
performed by the Wilcoxon Signed Rank Test with p < 0.05.

We choose two previous related approaches for the val-
idation of our methods: Cambazoglu et al.’s Early Exit
Optimization [4] and Wang et al.’s Cascade Model [12].
Since both approaches do not explain how to efficiently
find enough documents candidates in the very beginning,
we combine their approaches with a top k with k = 1000
method for the first stage of the ensemble, resp. the cascade.
Additionally we used a simple top k [7] with k = 20 method
with BM25 features as baseline. We use the same rankers
as in [12] - BM25 and Language Model with Dirichlet prior
based features. Other rankers are also possible but is not
the focus of this work. For the concrete experiments we
used the configuration provided by Wang et al.1 and Early
Exit functions with rank thresholds like Cambazoglu et al.
We tuned all methods in such a way that we get the best
possible results while keeping a given budget for at least
95% of the test queries.

All methods are implemented in a comparable manner.
Documents are loaded and (for our method) all rankers
w.r.t. the parameterization are applied in one run, or (for
Cambazoglu et al. and Wang et al.) only the first ranker
is applied and the best 1000 documents are maintained and
later processed by the rest of the ensemble resp. cascade. For
the top 20 method additional candidate pruning is performed.

The charts in Figure 1 and Figure 2 show the NDCG
achieved by the tested methods under different budgets.
The top 20 method needs in our implementation 70 ms for
WT10g and 900 ms for .Gov2. Hence, for smaller budgets

1 http://www.umiacs.umd.edu/˜jimmylin/ivory/docs/index.html
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Figure 1. NDCG for different budget on the WT10g data set.
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Figure 2. NDCG for different budget on the .Gov2 data set

this method cannot be used. Further, we show the upper
bound of the NDCG at 20. This is the value we can achieve if
we set the budget to infinity. For both data sets our proposed
method shows better results compared to the other methods.
Cambazoglu et al.’s Early Exit Optimization performs not as
good as our method, but outperforms Wang et al.’ Cascade
model. The Cascade model shows relatively poor results -
for .Gov2 even worse than Top 20.

In Table I we summarize the results of our experiments.
We report average NDCG at 20 and Precision at 20 over all
tested budgets as well as how many times we could actually
keep the budget. Our method outperforms all other methods
in terms of retrieval quality. On the WT10g data set we get
5% better results w.r.t. NDCG. For Precision at 20 we get
only slightly better results. On the .Gov2 data set we get 10%
better results compared to Wang et al’s method. Compared
to Cambazoglu et al.’s we get 2 to 3% better results.

Table I
MEAN NDCG@20 AND PRECISION@20 OVER ALL TESTED BUDGETS.
ERROR NOTES HOW MANY TEST QUERIES COULD NOT ACTUALLY END

BEFORE THE BUDGET WAS EXCEEDED. BOLD NUMBERS SHOW BEST
RESULTS FOR THE DATA SETS. *SHOWS SIGNIFICANT IMPROVEMENTS.

WT10g .Gov2
Method Error NDCG P20 Error NDCG P20
Cascade 2% 31.58 25.96 3% 50.17 46.51
Early exit 2% 31.57* 26.13* 4% 54.35* 50.75*
Our method 3% 33.40* 26.64* 4% 55.39* 52.07*

X. CONCLUSIONS AND FUTURE WORK

We explained the problem of ranking under budgets on
loading and computational costs. We introduced dependen-
cies of documents and rankers. The dependencies were
used to estimate the use we gain when using postings of
certain terms and applying specific rankers. Further the
dependencies were applied to calculate costs that occur when
loading and processing postings. We defined an optimization
task of which the solution results in the optimal documents
(resp. postings) to load and rankers to apply when facing an
arbitrary budget jointly on loading and computational costs.
The evaluation of our proposed solution of the optimization
task showed better results compared with state-of-the-art
budget aware ranking methods. Especially under very tight
budgets we showed that our proposed method produces very
good results.

For the future we plan to test our method on further data
sets and in different settings. We want to investigate the
influence of the number of posting classes on the quality
under the budgets. Further we want to explore how much
the usefulness of bigrams depends on how many postings of
the terms from the bigram can be loaded.
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