Classifying Words: A Syllables-based Model 8th International Workshop on Text-based Information Retrieval - TIR '11 [DEXA 2011]

Pattaraporn Warintarawej¹, Anne Laurent¹, Pierre Pompidor¹, Armelle Cassanas², Bénédicte Laurent²

> ¹Lirmm, University Montpellier 2 ²Namae Concept

August,31 2011

Outline

- 2 Syllabification
- Words Classification: A syllables-based model
- 4 Top-k Classification
- 5 Experiment and Result
- 6 Conclusion and Future work

Motivations Syllabification Words Classification: A syllables-based model Top-k Classification Experiment and Red

2 Syllabification

3 Words Classification: A syllables-based model

- 4 Top-k Classification
- 5 Experiment and Result
- 6 Conclusion and Future work

Motivations Syllabification Words Classification: A syllables-based model Top-k Classification Experiment and Residu

Brand names

VIVENDI NOUVALIA GOÛCOLAT AUREA SEVEANE LYLIA SOLÉA EVARANDA ECONOVISTA

- Linguistics demands:
 - The liguists create new names regarding to business requirement
 - Methods to automatically analyse new names by saying which concepts they are related to

Brand names

VIVENDI NOUVALIA GOÛCOLAT AUREA SEVEANE LYLIA SOLÉA EVARANDA ECONOVISTA

- Linguistics demands:
 - The liguists create new names regarding to business requirement
 - Methods to automatically analyse new names by saying which concepts they are related to
- Syllabification approach:
 - To retrieve syllable boundaries in words
 - Takes syllables into account for analysing a new name

Brand names

VIVENDI NOUVALIA GOÛCOLAT AUREA SEVEANE LYLIA SOLÉA EVARANDA ECONOVISTA

- Linguistics demands:
 - The liguists create new names regarding to business requirement
 - Methods to automatically analyse new names by saying which concepts they are related to
- Syllabification approach:
 - To retrieve syllable boundaries in words
 - Takes syllables into account for analysing a new name

Brand names

VIVENDI NOUVALIA GOÛCOLAT AUREA SEVEANE LYLIA SOLÉA EVARANDA ECONOVISTA

- Linguistics demands:
 - The liguists create new names regarding to business requirement
 - Methods to automatically analyse new names by saying which concepts they are related to
- Syllabification approach:
 - To retrieve syllable boundaries in words
 - Takes syllables into account for analysing a new name

Text classification + Bag-of-syllables => Classifying Words: A Syllables-based Model

2 Syllabification

- 3 Words Classification: A syllables-based model
- 4 Top-k Classification
- 5 Experiment and Result
- 6 Conclusion and Future work

Syllabification concept

• Syllabification (in french Syllabation):

- Syllabification is the separation of a word into syllables
- The syllabifier was created applying "Rule-based framework", *from Namae Concept Company*
- Syllabification algorithm implements the predefined rules to separate word

Syllabification concept

• Syllabification (in french Syllabation):

- Syllabification is the separation of a word into syllables
- The syllabifier was created applying "Rule-based framework", *from Namae Concept Company*
- Syllabification algorithm implements the predefined rules to separate word
- The example rule:
 - VCCV => V-CCV when V = any vowel, CC = either PH,CH,TH or GN
 - Ex. résignation = ré-si-gna-tion, marcher = mar-cher

- The algorithm scans the word from left to right and reaches the second vowel to find the boundary of the first cut according to the syllabification rules
- The process goes on till the last letter is reached
- The algorithm performs recursively

- The algorithm scans the word from left to right and reaches the second vowel to find the boundary of the first cut according to the syllabification rules
- The process goes on till the last letter is reached
- The algorithm performs recursively

Syllabification process of the word : nouvalia					
Round	Curent stream	result syllable	Next stream	Rule	
1	nouvalia	nou	valia	VCV => V-CV	
2	valia	va	lia	VCV => V-CV	
3	lia	lia	-	keep vowels together at the end of words	

2 Syllabification

3 Words Classification: A syllables-based model

- 4 Top-k Classification
- 5 Experiment and Result
- 6 Conclusion and Future work

Words Classification function: a syllables-based model

- Words classification is based-on a text classification model
- Let's define the function as:

$$c = f(w)$$

when c is the predefined concept, w is the word to classify

- To represent words as a syllables-based model, each word w is represented as a vector of weights length |S|, where |S| is the number of syllables in domain
- Let's define a word as:

 $w = < s_1(w), s_2(w), s_3(w), ..., s_{|S|}(w) >$

where $s_i(w)$ is the binary weight of the *i*th syllable; 1 if the syllable appears in the word, 0 otherwise.

- High dimensionality of the feature space
- Most of these features are not relevant and can slow down the classification process
- Feature selection is commonly used to reduce the dimensionality of feature space and improve the efficiency of classifier
- We propose Syllable frequency (SF) and Mutual Information (*MI*) for feature selection

- *Syllable frequency (SF)*: the simple weightening of features calculate by its frequency in a class
- *Mutual Information (MI)*: the weight of feature represents the dependency of that feature in the regarding class

where the N_{10} is the number of words that contain syllable t and not in class c etc. $N_{1.} = N_{10} + N_{11}$ is the number of words that contain syllable t, N is the total number of words in domain.

Naive Bayes Classifier

- The multi-variate Bernoulli Event Model
- Given a word w_i, the probability of each class c_j is calculated as

$$P(c_j|w_i) = \frac{P(c_j)P(w_i|c_j)}{P(w_i)}$$

- where a set of syllables S is given from feature selection
- a word w_i is represented with a vector of |S| dimensions as

$$w = < s_1(w), s_2(w), s_3(w), ..., s_{|S|}(w) >$$

• $P(w_i|c_j)$ can be calulated under the Naive Bayes assumption as:

$$P(w_i|c_j) = \prod_{1 \le k \le |S|} P(s_k|c_j)^{(s_k(w))} (1 - P(s_k|c_j))^{(1-s_k(w))}$$

KNN Classifier

KNN Classifier

• Step 1: Calculate the similarity between a testing word (*w_i*) and a word (*w_t*) in domain, define by CosSim function as:

$$CosSim(w_i, w_t) = \frac{D}{\sqrt{A * B}}$$
(1)

Where D is the number of syllables that a testing word (w_i) and a word in domain (w_t) have in common A is the number of syllables in a testing word (w_i) and B is the number of syllables in a word in domain (w_t) .

- Step 2: Select k neighbors of w_i by ranking the similarity values
- Step 3: Calculate the confidence of a word (w_i) belonging to a class (c) as:

$$confidence(c, w_i) = \frac{\sum_{\substack{k_i' \in K \mid (Class(k_i') = c)}}{Sim(k_i, w_i)}}{\sum_{\substack{k_i \in K}}{Sim(k_i, w_i)}}$$
(2)

Where Sim is the CosSim function

2 Syllabification

3 Words Classification: A syllables-based model

- 5 Experiment and Result
- 6 Conclusion and Future work

Motivations Syllabification Words Classification: A syllables-based model Top-k Classification Experiment and Real

- The idea of Top-k classification is to select more than one class for classification result
- Both of *NaiveBayes* and *KNN* produce the score to measure how much the word belongs to the class
- Ranking top scores from classifier and selecting k classes

2 Syllabification

3 Words Classification: A syllables-based model

4 Top-k Classification

- 5 Experiment and Result
- 6 Conclusion and Future work

Motivations Syllabification Words Classification: A syllables-based model Top-k Classification Experiment and Result

Experiment and Result

The corpus

Concept(Class)	#Num of words	Concept	#Num of words
Éventualité	138	Violence	355
Saisons	82	Distinction	168
Nouveauté	169	Droit	3,065
Humidité	195	Figures de discours	128
Terre	477	Architecture	1,539
Soleil	369	Poésie	378
Lichens	52	Pain	325
Reptiles	124	Sucrerie	274
Goût	196	Boisson	595
Effort	163	Mode	169

- Collect words from French Larousse thesaurus and JeuxDeMots [M.Lafourcade]
- Select 20 concepts containing 8,961 words and 3,605 syllables. (after removing stopwords)
- Evaluate Naive Bayes and KNN by 10-fold cross validation

Naive Bayes result

- SF and MI were considered as 100, 500, 1000 and 1500 syllables
- Experiment Results: Classification Accuracy by Top-3 classes of Naive Bayes Classifier with various #num of features

Feature Selection	#Num of features	Accuracy (%)
	100	72.57
МІ	500	75.50
IVII	1000	74.37
	1500	72.88
	100	71.62
SE	500	76.54
51	1000	77.22
	1500	75.70

Syllables make more meaningful results

- User needs meaningful explanation for classification results
- Syllables-based model can serve this purpose : "nouvalia" is studied to be the name of an exposition center for all the new objects of the year, Naive Bayes says "nouvalia" belongs to the concept "Nouveauté" because it contains the syllables "nou" and "va' which are parts of the set of discriminative syllables from concept "Nouveauté".

Syllables of	oncept : Nouveauté : 51 sylla	bles		
_1' or i1 (.0016) _look_ (0.00	16) por (0.002)	jeu (0.0028)	
neu	f (0.0168) vel (0.0048)	dis (0.0025)	bleu
(0.0016)	l'osil (0.0016) .	wil_(0.0016) jeu (0.0032) neu (0.	0017)
frai (0	0034) tun (0.0016)	vant (0.0016) _n	éo (0.0028) va:	1t
gar (0.	0021) cheur (0.00	17) muer (0.0016)	frais (0.00	5) an
(0.0016)	nou (0.0	181) gqn (0.0032) _vieil	
(0.0032	ge_(0.0017)_sou	r (0.0017) _re (0.0	03) _con (0.00	2) -gan
(0.0023 nou (0.0	jei (0.0016)ne 023)mo (0.0026	w (0.0016) ti (0.00 5) _tout_ (0.0019	(36) _no (0.00)) _flam (0.0016)	37) _vient_
(0.0017)	_ve (0.0017) nis ()	0.002) _fic (0.0016	veau	
(0.00	98) va (0.0021)	der (0.0078)	-look_ (0.0016)	_né_

KNN result

- Take all syllables into account for each comparing of pair words
- The result from confidence scores were ranked and top-3 classes were selected
- Experiment Results: Classification Accuracy by top-3 classes of KNN with various #num k neighbors.

#Num of k	Accuracy (%)	
10	85.36	
20	90.60	
30	92.49	
40	93.64	
50	94.47	
60	94.99	

KNN Result Example

Wor	a		Syllables		
goû	colat		_goû co lat_		
No.	Word	Syllables	Concept	CosSi	
1	chocolat	_cho.co.lat_	Froid Liquide Couleur Blanc Noir Brun Parlum Plaistr Pain Sucrete Boisson	0.666	
2	chocolat chaud	_cho,co,lat_,_chaud_	Bolsson	0.577	
3	chocolat noir	_cho,co,lat_,_noir_	Noir Sucrerie	0.577	
4	chocolat au Iait	_cho,co,lat_,_au_,_lait_	Boisson	0.516	
5	pain au chocolat	_painaucho,co.lat_	Pain	0.516	
6	truffe entruf,feencho.co.lat_ chocolat		Sucretie	0.471	
7	goûteux	_goû,teux_	Goût	0.408	
8	goûteur	_go0,teur_	Goût	0.4	
9	salat	_sa,lat_	Rollgion Islam Priéro	0.409	
10	prélat	_pré,lat_	Religion Pape Titres Droit	0.408	
11	goùter	_goû,ter_	Soirée Goût Comparaison Sociabilité Langue Maison Repas Bolsson Passe-temps	0.4082	
Con	cept	Words		Total words	
Bois	son	chocolat chocolat c	haud chocolat au lait goûler	4	
Suc	rorie	chocolat chocolat n	oir truffe en chocolat	3	
Goù	t	goûteux goûteur g	oûter	3	
Pain chocolat pain au ch		chocolat pain au ch	occlat	2	
Religion salat prélat		salat] prélat		2	
Noir chocolat chocolat n		chocolat chocolatn	oir	2	
Con	cept			Confidence (9	
Bols	son			40,4	

Words Classification: A syllables-based model Top-k Classification Experiment and Result

Noir

Motivations Syllabification Words Classification: A syllables-based model Top-k Classification Experiment and Result

2 Syllabification

3 Words Classification: A syllables-based model

- 4 Top-k Classification
- 5 Experiment and Result
- 6 Conclusion and Future work

Conclusion

Conclusion:

- KNN performed better than Naive Bayes
- Syllable Frequency(SF) archived the higher percentage of classification accuracy than Mutual Information(MI)
- Top-k classes helps user see more relevant concepts
- The syllables-based model helps to track back to explain why the word related to the concepts by using discriminative syllables set(Naive Bayes)

Future work

Future work:

- Although some syllables have meaning, but it is not enough for the linguists. The linguists need to know what are the lexemes in a word
- A lexeme is the minimal set of letters containing the meaning of a word
- Consider the way to find lexemes based on syllables. Instead of using syllables in classification model, lexemes will be used as a feature set

Thank you for your attention.

