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Introduction
Classification Task

Given:

o feature space X with feature vectors x
o classification function (closed form unknown) ¢: X — Y
a sample S = {(x,y) | x € X,y = ¢(x)}
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Introduction
Classification Task

Given:

o feature space X with feature vectors x
o classification function (closed form unknown) ¢: X — Y
a sample S = {(x,y) | x € X,y = ¢(x)}

Searched:
0 hypothesis h € H that minimizes P(h(x) # ¢(x)), the generalization error.

\ >4
-~

err(h)
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Introduction
Classification Task

Given:

o feature space X with feature vectors x
o classification function (closed form unknown) ¢: X — Y
a sample S = {(x,y) | x € X,y = ¢(x)}

Searched:

0 hypothesis h € H that minimizes P(h(x) # ¢(x)), the generalization error.

\ >4

err(h)
Measuring effectiveness of h:
a errg(h Z/ossg/1 ,c(x))
xeS

a err(h*) := min err(h)
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Introduction
Classification Task

Given:
o set O of real-world objects o

o classification function (closed form unknown) ¢: X — Y
a sample S = {(x,y) | x € X,y = ¢(x)}

Searched:

0 hypothesis h € H that minimizes P(h(x) # ¢(x)), the generalization error.

\ g

err(h)
Measuring effectiveness of h:
a errg(h Z/osso/1 ,c(x))
xeS

a err(h*) := min err(h)
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Introduction
Model Formation Task

The process (the function) « for deriving x from o is called model formation.

a:0 — X
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Introduction
Model Formation Task

The process (the function) « for deriving x from o is called model formation.
a:0— X
Choosing between different model formation functions a4, ..., a,,

choosing between different feature spaces X,,, ..., X,,,
choosing between different hypotheses spaces H,,, ..., H,

m
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Introduction

Model Formation Task

The process (the function) « for deriving x from o is called model formation.
a:0— X

Choosing between different model formation functions a4, ..., a,,

choosing between different feature spaces X,,, ..., X,,,
choosing between different hypotheses spaces H,,, ..., H,,
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Introduction
Model Formation Task

The process (the function) « for deriving x from o is called model formation.

a:0— X
Choosing between different model formation functions aq, ..., a,,
choosing between different feature spaces X,,, ..., X,,,

choosing between different hypotheses spaces H,,, ..., H,
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We call the model under «; being more robust than the model under oy, <

errs(h,) > errs(h’,) and err(h;,) < err(h},)
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Introduction
The Whole Picture

Object classification (real-world)

Objects % Classes
@) -Y
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Introduction
The Whole Picture

Object classification (real-world)

Objects % Classes
O -Y

Model formation o
Feature vector classification ¢

\/

X
Feature space

Learning means searching for a /» ¢ H such that P(h(x) # c(x)) Is minimum.
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Bias and Variance
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Bias and Variance
Error Decomposition

Consider:

o A feature vector x and its predicted class label § = h(x), where

0 h is characterized by a weight vector 6, where

0 # has been estimated based on a random sample S = {(x, ¢(x)}.
6 = 0(S), and hence h = h(fs)
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Bias and Variance
Error Decomposition

Consider:

o A feature vector x and its predicted class label § = h(x), where

0 h is characterized by a weight vector 6, where

0 # has been estimated based on a random sample S = {(x, ¢(x)}.
6 = 0(S), and hence h = h(fs)

Observations:

0 A series of samples S;, S; C U, entails a series of hypotheses h(6,),
o giving for a feature vector x a series of class labels y; = h(6;, x).
y is considered as a random variable, denoted as ~.
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Bias and Variance
Error Decomposition

Consider:

o A feature vector x and its predicted class label § = h(x), where

0 h is characterized by a weight vector 6, where

0 # has been estimated based on a random sample S = {(x, ¢(x)}.
6 = 0(S), and hence h = h(fs)

Observations:

0 A series of samples S;, S; C U, entails a series of hypotheses h(6,),
o giving for a feature vector x a series of class labels y; = h(6;, x).
y is considered as a random variable, denoted as ~.

Consequences:

0 0%(Z) is the variance of Z,
a |0 [S] 1 o*(Z) 1
a 18] U] | o*(2) 1
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Bias and Variance

Error Decomposition (continued)

Let Z and Y denote the random variables for g and y

MSE(Z) = E((Z —Y)?)
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Bias and Variance

Error Decomposition (continued)

Let Z and Y denote the random variables for g and y

MSE(Z) = E(Z-Y)?)
= B(Z2=2-Z-Y +Y?)
— E(2?) —2.E(Z-Y)+ E(Y?
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Bias and Variance

Error Decomposition (continued)

Let Z and Y denote the random variables for g and y
MSE(Z) = E((Z —Y)?)
= E(Z*=2-Z-Y +Y?
= E(Z?% —2-E(Z-Y)+ E(Y?)

= (B(2)?+0%(7Z)—2-B(Z-Y)+ E(Y?)
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Bias and Variance

Error Decomposition (continued)

Let Z and Y denote the random variables for g and y

MSE(Z) = E((Z —Y)?)

= B(2?) —2.F(Z-Y)+ E(Y?)
— (B(Z))+0%(Z) =2 -E(Z-Y)+ E(Y?)
= (BE(2))?+0*Z) —2-BE(Z-Y)+ (BEY))? +d%Y)
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Bias and Variance

Error Decomposition (continued)

and y

Let Z and Y denote the random variables for g

MSE(Z) = E((Z —Y)?)

+0*(Y) +0*(Z)

e~~~ o~
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Bias and Variance

Error Decomposition (continued)

and y

Let Z and Y denote the random variables for g

MSE(Z) = E((Z —Y)?)
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Bias and Variance

Error Decomposition (continued)

Let Z and Y denote the random variables for g and y

MSE(Z) = E((Z —Y)?)

= (BE(Z-=Y))*+0%(Z)+ oY)
= (bias(Z))* + o*(Z) + IrreducibleError

If Y is constant:
= (BE(Z)-Y) +0°(2)
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Bias and Variance

Error Decomposition (continued)

Let Z and Y denote the random variables for g and y

MSE(Z) = E((Z —Y)?)

= (BE(Z-=Y))*+0%(Z)+ oY)
= (bias(Z))* + o*(Z) + IrreducibleError

If Y is constant:
= (BE(Z)-Y) +0°(2)
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Bias and Variance

lllustration

— MSE
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(hypothesis complexity)
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Bias and Variance

lllustration

Bias?
Variance

— MSE
— Bias
— Variance

Parameter number

O O
low 07 02 high (hypothesis complexity)

errs(hj;l) > errg(hj;Q)

Comparing two model-classifier-combinations under a sample S.
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Bias and Variance

lllustration

Bias?
Variance

— MSE
— Bias
— Variance

Parameter number

low (hypothesis complexity)

~
N\
01

O
02 high
err(hzl) < err(hj;Z)

The same model-classifier-combinations under a sample S, with |S’| > |S].

=» The model under «; is more robust than the model under «s.
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Bias and Variance

Preliminary Summary

o Even when properly choosing training and test sets, a model selection
decision may not be justified by error minimization.

0 Rationale: the concept of representativeness gets lost for extreme ratios
between the sample size and an application set in the wild.

The bias of the less complex classifier is over-estimated.

The variance of the more complex classifier is under-estimated.
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Robust Models in IR
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Robust Models in IR
Case Study I: Text Categorization

The model under «; is more robust than the model under oy <

errs(h,,) > errs(h,,)  and  err(hg,) < err(h,)

Experiment rationale:
0 Topic classification for the web is learned on extremely small samples.
o The web generalization error of a classifier ~ cannot be computed.

err(h) is usually unknown.

Study the effect with a large (test) corpus in the role of the web by
comparing errs(h,) and err(h,,) for different a.
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Robust Models in IR
Case Study I: Text Categorization

Experiment setup 1:

Q

Q

Q

Corpus
Corpus Size

Considered classes

Sample size
Ratio sample and corpus

Inductive learner

Model formation functions «

1. ap: V = {[a-2]" +}, [V] = 9951
2. as: V = {[a-z]
3. az: V = {[a-2]

4. ap V = {[a-2]?+}, [V] = 464
5. a5 V = {[a-z] ¥}, [V| = 26

5)

L4}, [V| = 6172
35}, [V| = 2729
2

RCV1
663 768 documents

corporate (292 348), economics (51 148),
government (161 523), market (158 749)

800, drawn i.i.d. from RCV1
0.0012
SVM with linear kernel

5 VSM variants
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Robust Models in IR
Case Study I: Text Categorization
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Robust Models in IR
Case Study I: Text Categorization
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Robust Models in IR
Case Study I: Text Categorization

- Sample error errg errg W77z
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Robust Models in IR
Case Study I: Text Categorization

Experiment setup 2:

Q

Q

Q

Corpus
Corpus Size

Considered classes

Sample size
Ratio sample and corpus

Inductive learner

Model formation functions «

1. «q: tfidfweighting scheme

2. «s: Boolean weighting scheme

RCVA1
663 768 documents

corporate (292 348), economics (51 148),
government (161 523), market (158 749)

800, drawn i.i.d. from RCV1
0.0012
SVM with linear kernel

2 VSM variants
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Robust Models in IR

Case Study I: Text Categorization
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Robust Models in IR
Case Study I: Text Categorization
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Robust Models in IR
Case Study I: Text Categorization
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Robust Models in IR
Case Study Il: Web Genre Classification

Given a web page, classify to one of the following 8 classes:
argp| B ME

Shop Help Article Discussion Link collection Non-pers. home Personal home Download

Experiment rationale:
0 The sizes of existing genre corpora vary between 200 - 2500 documents.

0 The number of the web genres in these corpora is between 3 and 16.

O The researchers report an very good (too good?) classification results.

The genre corpora are biased, e.g. because
1. Editors collect their favored documents only.
2. Editors introduce subconsciously correlations between topic and genre.

The classifiers that are learned with these corpora will not generalize well.

Learn two h,,, h,, ON corpus A and measure their export accuracy on corpus B.
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Robust Models in IR
Case Study II: Web Genre Classification

Experiment setup:

Q Corpus A KI-04, 1 200 documents

QO Considered classes article, discussion, shop, help, personal home,
non-personal home, link collection, download

a Corpus B 7-Web-Genre, 900 documents

0 Considered classes listing (KI-04 link collection), eshop (KI-04 shop),
home page (KI-04 personal home)

O Sample sizes 50-350, drawn i.i.d. from KI-04

Q Inductive learner SVM with linear kernel

0 Model formation functions «a 2 genre retrieval models

1. aq: VSM-based model with 3500 words

2. «: special concentrations measures plus core vocabulary (98 features)
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Robust Models in IR
Case Study II: Web Genre Classification

Within corpus accuracy:

predictive accuracy

75

70

65

60 r

50

45

.
.
.
.
55
.
.

Corpus A. (KI-04)

100 150 200 250 300
number of training instances

errs(hy,) < errs(hy,)
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Robust Models in IR
Case Study II: Web Genre Classification

Export accuracy:

75

Training corpus A. (KI-04)
| Test corpus B. (7-Web-Genre)

70

export accuracy

100 200 300 400 500 600 700
number of training instances

err(hg,) > err(h;,)

©stein TIR’11



Summary

©stein TIR’11



Summary

1. Be careful, if the ratio between sample size and application set (“test set”)
becomes extreme:
A model selection decision may not be justified by error minimization.

2. Consider ...
0 a bias over-estimation of the less complex classifier or
0 a variance under-estimation of the more complex classifier.

3. In web scenarios the true error (generalization error) of a classifier cannot
be analyzed:

develop a scale-up scenario to assess the impact on the error
if being in doubt stick to the less complex classifier
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Thank you!
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Excursus: Bias Types
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Excursus: Bias Types
Bias in Classification Tasks

Restriction bias Sample selection bias Preference bias

<0, Y> <X,Y> <GS Y> <o, h>

Task Model Sample Supervised  Solution
formation o formation learning

\/
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