Robust Models in Information Retrieval

Nedim Lipka

Benno Stein

Bauhaus-Universität Weimar [www.webis.de]

Robust Models in Information Retrieval

Outline · Introduction

- · Bias and Variance
- Robust Models in IR
- Summary
- · Excursus: Bias Types

[△] ©stein TIR'11

Classification Task

Given:

- \Box feature space X with feature vectors \mathbf{x}
- $\ \square$ classification function (closed form unknown) $c:X \to Y$
- \Box sample $S = \{(\mathbf{x}, y) \mid \mathbf{x} \in X, y = c(\mathbf{x})\}$

Classification Task

Given:

- \Box feature space X with feature vectors \mathbf{x}
- \Box classification function (closed form unknown) $c: X \to Y$
- \Box sample $S = \{(\mathbf{x}, y) \mid \mathbf{x} \in X, y = c(\mathbf{x})\}$

Searched:

Classification Task

Given:

- \Box feature space X with feature vectors \mathbf{x}
- \Box classification function (closed form unknown) $c: X \to Y$
- \Box sample $S = \{(\mathbf{x}, y) \mid \mathbf{x} \in X, y = c(\mathbf{x})\}$

Searched:

Measuring effectiveness of *h*:

$$\square \ \textit{err}_S(h) = \frac{1}{|S|} \ \sum_{\mathbf{x} \in S} \textit{loss}_{0/1}(h(\mathbf{x}), c(\mathbf{x}))$$

 $err_S(h)$ is called test error if S is not used for the construction of h.

 \square $err(h^*) := \min_{h \in H} err(h)$ defines lower bound for err(h) \Rightarrow restriction bias.

Classification Task

Given:

- □ set O of real-world objects o
- \Box feature space X with feature vectors x
- \Box classification function (closed form unknown) $c: X \to Y$
- \Box sample $S = \{(\mathbf{x}, y) \mid \mathbf{x} \in X, y = c(\mathbf{x})\}$

Searched:

 \Box hypothesis $h \in H$ that minimizes $P(h(\mathbf{x}) \neq c(\mathbf{x}))$, the generalization error.

Measuring effectiveness of *h*:

$$\quad \textbf{pr}_S(h) = \frac{1}{|S|} \sum_{\mathbf{x} \in S} \textit{loss}_{0/1}(h(\mathbf{x}), c(\mathbf{x}))$$

 $err_S(h)$ is called test error if S is not used for the construction of h.

 \square $err(h^*) := \min_{h \in H} err(h)$ defines lower bound for err(h) \Rightarrow restriction bias.

Model Formation Task

The process (the function) α for deriving \mathbf{x} from o is called *model formation*.

$$\alpha: O \to X$$

Model Formation Task

The process (the function) α for deriving \mathbf{x} from o is called *model formation*.

$$\alpha: O \to X$$

Choosing between different model formation functions $\alpha_1, \ldots, \alpha_m$

- \rightarrow choosing between different feature spaces $X_{\alpha_1}, \dots, X_{\alpha_m}$
 - \rightarrow choosing between different hypotheses spaces $H_{\alpha_1}, \ldots, H_{\alpha_m}$

Model Formation Task

The process (the function) α for deriving \mathbf{x} from o is called *model formation*.

$$\alpha: O \to X$$

Choosing between different model formation functions $\alpha_1, \ldots, \alpha_m$

- \rightarrow choosing between different feature spaces $X_{\alpha_1}, \dots, X_{\alpha_m}$
 - \rightarrow choosing between different hypotheses spaces $H_{\alpha_1}, \ldots, H_{\alpha_m}$

Model Formation Task

The process (the function) α for deriving x from o is called *model formation*.

$$\alpha: O \to X$$

Choosing between different model formation functions $\alpha_1, \ldots, \alpha_m$

- \rightarrow choosing between different feature spaces $X_{\alpha_1}, \dots, X_{\alpha_m}$
 - \rightarrow choosing between different hypotheses spaces $H_{\alpha_1}, \ldots, H_{\alpha_m}$

We call the model under α_1 being *more robust than* the model under $\alpha_2 \Leftrightarrow$

$$\operatorname{\it err}_S(h_{\alpha_1}^*) > \operatorname{\it err}_S(h_{\alpha_2}^*)$$
 and $\operatorname{\it err}(h_{\alpha_1}^*) < \operatorname{\it err}(h_{\alpha_2}^*)$

 $[\wedge]$

The Whole Picture

Object classification (real-world)

The Whole Picture

Object classification (real-world)

Feature space

 $[\wedge]$ ©stein TIR'11

The Whole Picture

Object classification (real-world)

Learning means searching for a $h \in H$ such that $P(h(\mathbf{x}) \neq c(\mathbf{x}))$ is minimum.

[△] ©stein TIR'11

Error Decomposition

Consider:

- \Box A feature vector $\mathbf x$ and its predicted class label $\hat{y} = h(\mathbf x)$, where
- \Box h is characterized by a weight vector θ , where
- $\rightarrow \theta \equiv \theta(S)$, and hence $h \equiv h(\theta_S)$

Error Decomposition

Consider:

- \Box A feature vector \mathbf{x} and its predicted class label $\hat{y} = h(\mathbf{x})$, where
- \Box h is characterized by a weight vector θ , where
- \rightarrow $\theta \equiv \theta(S)$, and hence $h \equiv h(\theta_S)$

Observations:

- \Box A series of samples S_i , $S_i \subseteq U$, entails a series of hypotheses $h(\theta_i)$,
- \Box giving for a feature vector \mathbf{x} a series of class labels $\hat{y}_i = h(\theta_i, \mathbf{x})$.
- \rightarrow \hat{y} is considered as a random variable, denoted as Z.

Error Decomposition

Consider:

- \Box A feature vector \mathbf{x} and its predicted class label $\hat{y} = h(\mathbf{x})$, where
- \Box h is characterized by a weight vector θ , where
- $\rightarrow \theta \equiv \theta(S)$, and hence $h \equiv h(\theta_S)$

Observations:

- \Box A series of samples S_i , $S_i \subseteq U$, entails a series of hypotheses $h(\theta_i)$,
- \Box giving for a feature vector \mathbf{x} a series of class labels $\hat{y}_i = h(\theta_i, \mathbf{x})$.
- \Rightarrow \hat{y} is considered as a random variable, denoted as Z.

Consequences:

- $\sigma^2(Z)$ is the variance of Z, (= variance of the prediction)
- $\Box |\theta|: |S| \uparrow \Rightarrow \sigma^2(Z) \uparrow$
- $\Box |S|: |U| \downarrow \quad \Rightarrow \quad \sigma^2(Z) \uparrow$

Error Decomposition (continued)

Let Z and Y denote the random variables for \hat{y} $(=h(\theta_S,\mathbf{x}))$ and y $(=c(\mathbf{x}))$.

$$MSE(Z) = E((Z - Y)^2)$$

Error Decomposition (continued)

Let Z and Y denote the random variables for \hat{y} $(=h(\theta_S,\mathbf{x}))$ and y $(=c(\mathbf{x}))$.

$$egin{aligned} \textit{MSE}(Z) &= E((Z-Y)^2) \ &= E(Z^2 - 2 \cdot Z \cdot Y + Y^2) \ &= E(Z^2) & -2 \cdot E(Z \cdot Y) + E(Y^2) \end{aligned}$$

 $| \wedge |$

Error Decomposition (continued)

Let Z and Y denote the random variables for \hat{y} $(=h(\theta_S,\mathbf{x}))$ and y $(=c(\mathbf{x}))$.

$$\begin{aligned} \textit{MSE}(Z) &= E((Z - Y)^2) \\ &= E(Z^2 - 2 \cdot Z \cdot Y + Y^2) \\ &= E(Z^2) \qquad -2 \cdot E(Z \cdot Y) + E(Y^2) \\ &= (E(Z))^2 + \sigma^2(Z) - 2 \cdot E(Z \cdot Y) + E(Y^2) \end{aligned}$$

Error Decomposition (continued)

Let Z and Y denote the random variables for \hat{y} (= $h(\theta_S, \mathbf{x})$) and y (= $c(\mathbf{x})$).

$$\begin{aligned} \textit{MSE}(Z) &= E((Z - Y)^2) \\ &= E(Z^2 - 2 \cdot Z \cdot Y + Y^2) \\ &= E(Z^2) \qquad -2 \cdot E(Z \cdot Y) + E(Y^2) \\ &= (E(Z))^2 + \sigma^2(Z) - 2 \cdot E(Z \cdot Y) + E(Y^2) \\ &= (E(Z))^2 + \sigma^2(Z) - 2 \cdot E(Z \cdot Y) + (E(Y))^2 + \sigma^2(Y) \end{aligned}$$

Error Decomposition (continued)

Let Z and Y denote the random variables for \hat{y} (= $h(\theta_S, \mathbf{x})$) and y (= $c(\mathbf{x})$).

$$\begin{aligned} \textit{MSE}(Z) &= E((Z - Y)^2) \\ &= E(Z^2 - 2 \cdot Z \cdot Y + Y^2) \\ &= E(Z^2) \qquad -2 \cdot E(Z \cdot Y) + E(Y^2) \\ &= (E(Z))^2 + \sigma^2(Z) - 2 \cdot E(Z \cdot Y) + E(Y^2) \\ &= (E(Z))^2 + \sigma^2(Z) - 2 \cdot E(Z \cdot Y) + (E(Y))^2 + \sigma^2(Y) \\ &= (E(Z))^2 \qquad -2 \cdot E(Z \cdot Y) + (E(Y))^2 + \sigma^2(Y) + \sigma^2(Z) \\ &= (E(Z) - E(Y))^2 \qquad + \sigma^2(Y) + \sigma^2(Z) \end{aligned}$$

Error Decomposition (continued)

Let Z and Y denote the random variables for \hat{y} (= $h(\theta_S, \mathbf{x})$) and y (= $c(\mathbf{x})$).

$$\begin{split} \textit{MSE}(Z) &= E((Z-Y)^2) \\ &= E(Z^2 - 2 \cdot Z \cdot Y + Y^2) \\ &= E(Z^2) \qquad -2 \cdot E(Z \cdot Y) + E(Y^2) \\ &= (E(Z))^2 + \sigma^2(Z) - 2 \cdot E(Z \cdot Y) + E(Y^2) \\ &= (E(Z))^2 + \sigma^2(Z) - 2 \cdot E(Z \cdot Y) + (E(Y))^2 + \sigma^2(Y) \\ &= (E(Z))^2 \qquad -2 \cdot E(Z \cdot Y) + (E(Y))^2 + \sigma^2(Y) + \sigma^2(Z) \\ &= (E(Z) - E(Y))^2 \qquad + \sigma^2(Y) + \sigma^2(Z) \\ &= (E(Z - Y))^2 + \sigma^2(Z) + \sigma^2(Y) \\ &= (bias(Z))^2 + \sigma^2(Z) + \textit{IrreducibleError} \end{split}$$

Error Decomposition (continued)

Let Z and Y denote the random variables for \hat{y} (= $h(\theta_S, \mathbf{x})$) and y (= $c(\mathbf{x})$).

$$\begin{split} \textit{MSE}(Z) &= E((Z-Y)^2) \\ &= E(Z^2 - 2 \cdot Z \cdot Y + Y^2) \\ &= E(Z^2) \qquad -2 \cdot E(Z \cdot Y) + E(Y^2) \\ &= (E(Z))^2 + \sigma^2(Z) - 2 \cdot E(Z \cdot Y) + E(Y^2) \\ &= (E(Z))^2 + \sigma^2(Z) - 2 \cdot E(Z \cdot Y) + (E(Y))^2 + \sigma^2(Y) \\ &= (E(Z))^2 \qquad -2 \cdot E(Z \cdot Y) + (E(Y))^2 + \sigma^2(Y) + \sigma^2(Z) \\ &= (E(Z) - E(Y))^2 \qquad + \sigma^2(Y) + \sigma^2(Z) \\ &= (E(Z - Y))^2 + \sigma^2(Z) + \sigma^2(Y) \\ &= (bias(Z))^2 + \sigma^2(Z) + \textit{IrreducibleError} \end{split}$$

If *Y* is constant:

$$= (E(Z) - Y)^2 + \sigma^2(Z)$$

[^]

Error Decomposition (continued)

Let Z and Y denote the random variables for \hat{y} (= $h(\theta_S, \mathbf{x})$) and y (= $c(\mathbf{x})$).

$$\begin{array}{lll} \textit{MSE}(Z) &= E((Z-Y)^2) \\ &= E(Z^2 - 2 \cdot Z \cdot Y + Y^2) \\ &= E(Z^2) & -2 \cdot E(Z \cdot Y) + E(Y^2) \\ &= (E(Z))^2 + \sigma^2(Z) - 2 \cdot E(Z \cdot Y) + E(Y^2) \\ &= (E(Z))^2 + \sigma^2(Z) - 2 \cdot E(Z \cdot Y) + (E(Y))^2 & + \sigma^2(Y) \\ &= (E(Z))^2 & -2 \cdot E(Z \cdot Y) + (E(Y))^2 & + \sigma^2(Y) + \sigma^2(Z) \\ &= (E(Z) - E(Y))^2 & + \sigma^2(Y) + \sigma^2(Z) \\ &= (E(Z - Y))^2 + \sigma^2(Z) + \sigma^2(Y) \\ &= (bias(Z))^2 + \sigma^2(Z) + \textit{IrreducibleError} \end{array}$$

If Y is constant:

$$= (E(Z) - Y)^2 + \sigma^2(Z)$$

When analyzing MSE, bias, and σ^2 of a classifier h, the average over all examples of the test set is taken.

Illustration

Illustration

Illustration

Illustration

$$\mathit{err}_S(h_{\alpha_1}^*) > \mathit{err}_S(h_{\alpha_2}^*)$$

Comparing two model-classifier-combinations under a sample S.

[∧]

Illustration

The same model-classifier-combinations under a sample S', with $|S'| \gg |S|$.

 \rightarrow The model under α_1 is more robust than the model under α_2 .

Preliminary Summary

- □ Even when properly choosing training and test sets, a model selection decision may not be justified by error minimization.
- □ Rationale: the concept of representativeness gets lost for extreme ratios between the sample size and an application set in the wild.
 (consider working against the web)
- → The bias of the less complex classifier is over-estimated.
- → The variance of the more complex classifier is under-estimated.
- □ This behavior is consistent with the concept of the bias-variance-tradeoff.

[△] ©stein TIR'11

Case Study I: Text Categorization

The model under α_1 is *more robust than* the model under $\alpha_2 \Leftrightarrow$

$$\mathit{err}_S(h_{\alpha_1}^*) > \mathit{err}_S(h_{\alpha_2}^*) \qquad \text{and} \qquad \mathit{err}(h_{\alpha_1}^*) < \mathit{err}(h_{\alpha_2}^*)$$

Experiment rationale:

- □ Topic classification for the web is learned on extremely small samples.
- \Box The web generalization error of a classifier h cannot be computed.
- \rightarrow *err*(h) is usually unknown.
- → Study the effect with a large (test) corpus in the role of the web by comparing $err_S(h_\alpha)$ and $err(h_\alpha)$ for different α .

[\rightarrow]

Case Study I: Text Categorization

Experiment setup 1:

- □ Corpus
- □ Corpus Size
- □ Considered classes
- □ Sample size
- □ Ratio sample and corpus
- □ Inductive learner
- \Box Model formation functions α
 - 1. α_1 : $V = \{[a-z]^5 *\}, |V| = 9951$
 - **2.** α_2 : $V = \{[a z]^4 *\}, |V| = 6172$
 - **3.** α_3 : $V = \{[a-z]^3 *\}, |V| = 2729$
 - **4.** α_4 : $V = \{[a-z]^2 *\}, |V| = 464$
 - 5. α_5 : $V = \{[a-z] *\}, |V| = 26$

RCV1

663 768 documents

corporate (292 348), economics (51 148), government (161 523), market (158 749)

800, drawn i.i.d. from RCV1

0.0012

SVM with linear kernel

5 VSM variants

Case Study I: Text Categorization

Case Study I: Text Categorization

Case Study I: Text Categorization

Case Study I: Text Categorization

Experiment setup 2:

□ Corpus

□ Corpus Size

□ Considered classes

□ Sample size

□ Ratio sample and corpus

Inductive learner

 \Box Model formation functions α

1. α_1 : *tf*·*idf* weighting scheme

2. α_2 : Boolean weighting scheme

RCV1

663 768 documents

corporate (292 348), economics (51 148), government (161 523), market (158 749)

800, drawn i.i.d. from RCV1

0.0012

SVM with linear kernel

2 VSM variants

Case Study I: Text Categorization

Case Study I: Text Categorization

Case Study I: Text Categorization

Case Study II: Web Genre Classification

Given a web page, classify to one of the following 8 classes:

Experiment rationale:

- ☐ The sizes of existing genre corpora vary between 200 2500 documents.
- ☐ The number of the web genres in these corpora is between 3 and 16.
- ☐ The researchers report an very good (too good?) classification results.
- → The genre corpora are biased, e.g. because
 - 1. Editors collect their favored documents only.
 - 2. Editors introduce subconsciously correlations between topic and genre.
- → The classifiers that are learned with these corpora will not generalize well.
- \rightarrow Learn two $h_{\alpha_1}, h_{\alpha_2}$ on corpus A and measure their export accuracy on corpus B.

[^]

Case Study II: Web Genre Classification

Experiment setup:

□ Corpus A	KI-04, 1 200 documents
------------	------------------------

□ Considered classes article, discussion, shop, help, personal home,

non-personal home, link collection, download

□ Corpus B 7-Web-Genre, 900 documents

□ Considered classes listing (KI-04 link collection), eshop (KI-04 shop),

home page (KI-04 personal home)

□ Sample sizes 50-350, drawn i.i.d. from KI-04

☐ Inductive learner
SVM with linear kernel

 \supset Model formation functions α 2 genre retrieval models

1. α_1 : VSM-based model with 3 500 words

2. α_2 : special concentrations measures plus core vocabulary (98 features)

[\rightarrow]

Case Study II: Web Genre Classification

Within corpus accuracy:

$$\mathit{err}_S(h_{lpha_1}^*) < \mathit{err}_S(h_{lpha_2}^*)$$

Case Study II: Web Genre Classification

Export accuracy:

$$\mathit{err}(h_{\alpha_1}^*) > \mathit{err}(h_{\alpha_2}^*)$$

Summary

[△] ©stein TIR'11

Summary

- 1. Be careful, if the ratio between sample size and application set ("test set") becomes extreme:
 - A model selection decision may not be justified by error minimization.
- 2. Consider . . .
 - □ a bias over-estimation of the less complex classifier or
 - □ a variance under-estimation of the more complex classifier.
- 3. In web scenarios the true error (generalization error) of a classifier cannot be analyzed:
 - develop a scale-up scenario to assess the impact on the error
 - → if being in doubt stick to the less complex classifier

Thank you!

Excursus: Bias Types

Excursus: Bias Types

Bias in Classification Tasks

