

TU

31. August 2011

www.know-center.at

Model Selection Strategies for Author Disambiguation

TIR'11

Roman Kern, Mario Zechner, Michael Granitzer

© Know-Center 2010

gefördert durch das Kompetenzzentrenprogramm

Outline

Problem Statement

Disambiguation Workflow

Clustering & Model Selection

Data Set & Experiments

Conclusion

Problem Statement Definition

Given a set of scientific publications/citations, our aim is to identify distinct authors and their respective publications within the set

Problem Statement Examples

Where does ambiguity come from?

- Two distinct authors share the same name
- A single author is referred to by different orthographic variations of her name
- An author has changed her name due to marriage or other causes

3. 🗹 Keep +Self -Self 0 Self Citations +Auth -Auth 1 Authors Refine T	his Author List						
[PDF] Hierarchical text classification using methods from machine learning							
M Granitzer - Master's Thesis, Graz University of Technology, 2003							
Methods from Machine Learning Michael Granitzer Page 2. Hierarchical Text Classification using Methods from Machine submitted by Michael Granitzer Institute of Theoretical Computer Science							
(IGI), Graz University of Technology A-8010 Graz, Austria 27th October 2003							
Cited by 24 - Related articles - View as HTML - Austrian Union Catalog - All 10 ver	sions - Import into BibTeX						
4. V Keep +Self -Self 0 Self Citations +Auth -Auth 3 Authors Refine T	his Author List						
Apical and basolateral conductance in cultured A6 cells							
M Granitzer, <u>T Leal</u> , <u>W Nagel</u> Pflügers Archiv European, 1991							
1 D6partement de Physiologic, Universit6 Catholique de Louvain, Av. Hippocrate 55, B-1200							
Bruxelles, Belgium 2 Physiologisches Institut der Universit/it M/inchen, Pettenkoferstrasse							
12, W-8000 Munich 2, Federal Republic of Germany							
Cited by 25 - Related articles - All 4 versions - Import into BibTeX							

Application Scenarios

www.know-center.at

Citation and Impact Analysis

- Creating author profiles in social research networks like Mendeley
- Recommendation engine for research papers
- Facetted Search

cholar Article	s and patents	s 🛊	anytime	¢ includ	e citations	
edo the above qu	lery as: Quo	ted author n	ame 🔘 W	/ord matching	9 •	
vanced Analysis	Interface. G	o to the Sim	ple interface	from <u>here</u> . H	ow to <mark>save</mark> my	data analysi
pact indices						
Normalization	Citations	h-index	g-index	e-index	delta-h	delta-g
one	258	>10	>10	-	-	
er co-authorship	99.2	7	9	5	3.2	0.8
er age	23.4	3	4	2	0.3	4.5
Dashboard M	ly Library	Papers	Groups P	eople		
Edit Profile V	lew Profile	Updates				
	Dr M	ichool (Cronita	~ **		
	Dr. M	ichael	JIAIIIIZ	er		
PE	Assistant Pr	rofessor, Graz U	niversity of Tech	nnology, Knowled	dge Management	
1-2	Graz, Austri	a				
Contraction of the second						
-	Research fi Information	Retrieval, Mach	and Information	on Science - Inf sual Analytics, K	ormation Retrieva nowledge Discove	al ery,
	Semantic Te	chnologies and	Multimedia Ser	mantics	-	

Publications

Book (3)

Michael Granitzer (2008) KnowMiner - Konzeption & Entwicklung eines generischen Wissenserschließungsframeworks, 236. http://www.terrashop.de/83647209A/art... Download PDF (4.22 MB)

A Disambiguation Framework Overview

- Many systems presented in the literature for author disambiguation share the same workflow
- 1. Extract author name occurances from publications/citations
- 2. Block author names and the publications they occur in
- 3. Disambiguate authors within each block

A Disambiguation Framework 1. Author Name Extraction

Extraction of author names

- Rule-based extraction based on known publication layouts
- Machine learning techniques for sequence tagging (HMMs, CRFs, SVMs)
- **Achievable Performance** (not part of this paper)
 - 0.8-0.9 Precision
 - 0.5-0.8 Recall

→ The result of this stage is a set of author names for each publication/citation

A Disambiguation Framework 2. Blocking

- Blocking is the process of grouping sufficiently similar author names and the publications/citations associated with them
- Blocking is performed for performance and tractability reasons
 - **Similarity measures** for author names
 - Phonetic hashing via Soundex or Metaphone
 - String hashing methods
- Focus on Recall a block must contain all possible unique authors and their publications

A Disambiguation Framework 3. Disambiguation

- Disambiguation is most often achieved via **clustering**
 - For every block
 - Consider all pairs of author names represented as strings and their occurrence in publications
 - Cluster all pairs to groups with unique authors, so that
 - all pairs in a group represent the same unique author
 - All publications of one authors are contained in one group
- Core decisions to apply clustering
 - Features to represent pairs
 - Similarity Measures between pairs
 - Model Selection Method, i.e. guessing the number of authors in one block
 - Clustering algorithm

Clustering Properties Features & Similarity Measure

www.know-center.at

Features

- Noun, adjective and adverbs of publications plain text and information obtained from search engines
- Keywords extracted from a publiications plain text (TextRank)
- Tokenized title text
- Tokenized author names

Cosine as similarity measure

Clustering Properties Model Selection – I

Guess the number of unique authors in one block

- Large variance, correct number can range from 1 to 100 (and more)
- Hard problem, often neglected by related work

- Standard methods exists (e.g. density based, stability based)
 - Preliminary test showed very low accuracy

Development of a task specific model selection strategies (main contribution)

Clustering Properties Model Selection - II

www.know-center.at

- Clustering groups textually similar publications of a block
- Use different feature kind for model selection: Co-authorship
- The more co-authors overlapp in a cluster and the less they are spread between cluster, the better

Use conditional probabilities as measures therefore

$$\overline{P}_{ac} = \frac{1}{|pairs|} \sum_{\forall pairs} 1 - P(author | cluster)$$

$$\overline{P}_{ca} = \frac{1}{|pairs|} \sum_{\forall pairs} 1 - P(cluster | author)$$

$$F(C) = (\overline{P}_{ac} + \overline{P}_{ca})/2$$

12

Clustering Properties Model Selection - III

Similar formulation using point-wise conditional entropy

$$H_{pointwise}(Y|X) \stackrel{\text{def}}{=} -\sum_{C} p(x, y) \log p(y|x)$$
$$C = \{c|c \in Clusters_{Co-Author}\}$$

Example

Experiments Setup

- Giles provides a nice dataset of citations with 12 ambiguous author names (<u>http://bit.ly/aBV8qP</u>)
- Mendeley provided us with a much larger dataset retrieved from user profiles (<3 Mendeley)
- For every publication/citation we also gathered web search results for additional data from Google, Bing, ACM (until we got blocked), e.g. plain text

Workflow Setup

- Identification (Step 1) was not necessary
- Blocking used Ground-Truth to create forename subsets: Lee, Martin, Gupta, Kumar, Chen, Johnson

→ Error Analysis focuses solely on clustering properties

Experiments Results Clustering Algorithms

TU

Fix number of clusters to the true number of unique authors

Experiments Results Clustering Algorithms

HAC with average linking seems is best clustering approach

Experiments Results Features

Again, assume number of unique authors known

Author	Title	Keyword	Stem	Normalize	Purity	F1
\checkmark	\checkmark	\checkmark		\checkmark	0.92	0.9
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	0.91	0.89
		\checkmark		\checkmark	0.87	0.84
		\checkmark			0.87	0.84
\checkmark		\checkmark	\checkmark	\checkmark	0.88	0.83

Table IBEST 5 RESULTS USING HAC CLUSTERING ON THE GILES-MARTINSUBSET. SORTED BY F1. 16 DISTINCT AUTHORS, 112 PUBLICATIONS.

Author	Title	Keyword	Stem	Normalize	Purity	F1
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	0.72	0.50
\checkmark	\checkmark	\checkmark		\checkmark	0.70	0.48
\checkmark	\checkmark	\checkmark	\checkmark		0.70	0.46
	\checkmark	\checkmark	\checkmark	\checkmark	0.61	0.42
\checkmark	\checkmark	\checkmark			0.66	0.39

Table IIBEST 5 RESULTS ON HAC CLUSTERING ON THE GILES LEE SUBSET.SORTED BY F1. 100 DISTINCT AUTHORS, 1419 PUBLICATIONS.

Results on the Martin subset are encouraging. Reason: full-text features contain less noise

Experiments Results Model Selection

What is the difference if we have to guess the author number?

	Dataset	K_{real}	$F1_{best}$	K_{guess}	$F1_{guess}$	$F1_{real}$
	Mendely-lee	49	61%	44	28%	27%
$\square $	Giles-martin	16	90%	16	84%	84%
	Giles-gupta	26	65%	14	43%	65%
$ \longrightarrow $	Giles-kumar	14	70%	14	44%	44%
	Giles-chen	61	46%	12	10%	37%
$ \longrightarrow $	Giles-johnson	15	78%	11	60%	75%
	Giles-lee	100	50%	21	5%	38%

Table IV

MODEL SELECTION RESULTS USING POINT-WISE CONDITIONAL ENTROPY ON KEYWORDS ONLY

Performance varies, but gives good results when clustering comes close to the real groups (i.e. Martin Subset)

Underestimate correct number of clusters

Conclusion

HAC as empirical best algorithm for disambiguation

- New Model Selection Strategies work good given good clustering results
- Automatic Author Disambiguation still unsovled for practical scenarios
- Identification and Blocking as additional error sources
- Future Work
 - reduce the effect of blocking errors and model selection through outlier detection
 - Improved feature selection and cleaning

Thanks for your attention

and also thanks also to our supporters

You can follow our research on<u>http://team-</u> project.tugraz.at/blog or via Twitter @mgrani or via Mendley's public group "Publications (TEAM IAPP)"

20