
Fusing blog opinion retrieval results for better effectiveness

Shengli Wu
aSchool of Computer Science and Telecommunication Engineering

Jiangsu University, Zhenjiang, China
bSchool of Computing and Mathematics
University of Ulster, Newtownabbey, UK

Abstract—In recent years, blogs have been very popular on
the Web as a grassroots publishing platform. Some research
has been conducted on them and blog opinion retrieval is
one of the key issues. In this paper, we investigate if data
fusion can be useful for improvement of effectiveness of blog
opinion retrieval. Extensive experimentation with the runs
submitted to the blog opinion retrieval task in TREC 2008 is
carried out and a few data fusion methods including CombSum,
CombMNZ, Borda count, and the linear combination method
are investigated. We observe that generally speaking, all data
fusion methods involved are very competitive compared with
the best component retrieval system. Especially, the linear
combination method with proper training is superior to other
data fusion methods and it is able to beat the best component
retrieval system by a clear margin. This study demonstrates
that data fusion can be an effective technique for blog opinion
retrieval if proper fusion methods are applied.

Keywords-Blog system; Opinion retrieval; Data fusion; Lin-
ear combination

I. I NTRODUCTION

In recent years, blogs have been very popular on the
Web as a grassroots publishing platform. There are a large
number of them and they cover many different aspects of
people’s life. A blog may be owned by an individual or
a company. Posts on events, opinions, and so on, can be
published by the owner and comments can be made by the
readers accordingly.

A lot of research has been conducted on blogging systems
and some related issues, such as blog search engines, noti-
fication mechanisms, detecting splogs (spam blogs), facet-
based opinion retrieval, and so on, are discussed in [1]–[5]
and others. opinion retrieval is one of the important issues
addressed in blogging systems. Usually, an opinion retrieval
system is implemented by enhancing an ordinary informa-
tion retrieval system with an opinion finding mechanism,
which may rely on a lexicon of subjective words and phrases,
gathered from a variety of manually or automatically built
lexical resources.

In information retrieval, the data fusion technique has
been used to combine results from different retrieval models,
different document representations, different query repre-
sentations, and so on, to improve effectiveness. Generally
speaking, previous investigation on data fusion methods,

for example, in [6]–[10] and others, demonstrates that they
can improve retrieval effectiveness if carefully arranged.
In addition, many recently developed information retrieval
systems or toolkits, such as Indri1, terrier 2, Lucene 3,
and others, have also integrated different techniques and
components. They can be regarded as fusions of different
techniques or components.

In a sense, blog opinion retrieval systems are more
complicated than conventional information retrieval systems,
and many different kinds of techniques can be used together
in any individual blog opinion retrieval systems. In such a
scenario, we hypothesize that the data fusion technique is
very likely a useful technique for blog opinion retrieval. To
our knowledge, data fusion has not been investigated for
blog retrieval systems before. In this paper, we empirically
investigate this issue by extensive experimentation.

In 2006, TREC 4 introduced the blog retrieval track.
At first, only the opinion finding task was carried out.
In the following three years, polarity opinion finding and
distillation tasks had been added. For each of those tasks,
dozens, even hundreds of runs were submitted for evaluation.
This provide us a very good benchmark to test all sorts of
systems, techniques, and so on. Especially, in the TREC
2008 opinion finding task, a total of 191 runs were submitted
from 19 groups [11], and each of them includes a ranked
list of up to 1000 post documents for each of a total of 150
queries. Since the number of runs submitted and the number
of queries used are large, we consider this is the best data
set for the evaluation of the data fusion technique.

II. DATA FUSION METHODS

In this section, we discuss the data fusion methods used in
the experiment. CombSum, CombMNZ, and the linear com-
bination method with performance level weighting (LCP),
performance square weighting (LCP2), and weights decided
by multiple regression (LCR). The score normalization
methods used include Borda and the fitting linear score
normalization method,

1http://lemurproject.org/indri.php
2http://terrier.org/
3http://lucene.apache.org/
4http://trec.nist.gov/

Suppose for a given queryQ, n component retrieval
systems are used to search the same document collection
C. For documentdj , sij is the score calculated fordj

from component systemiri. Then for CombSum [12], we
calculate the total scoretj for every documentdj using

tj(CombSum) =
∑n

i=1 sij

while for CombMNZ [12], we use the equation

tj(CombMNZ) = m ∗
∑n

i=1 sij

to calculate scores. Herem is the number ofsij whose
value is above zero. For the linear combination method [9],
[13], we use the equation

tj(LN) =
∑n

i=1 (wi ∗ sij)

to calculate scores. Herewi is the weight predefined
for component systemiri. After the process of calculating
scores, all the documents are ranked according to their total
scores calculated.

For the linear combination method, a related issue is
how to assign weights to component systems. One policy
is to connect weight with performance. One straightforward
method is the performance-level weighting [6], [14]. That
is, if the average performance of systemiri over a group of
training queries isa, then we seta asiri’s weight. However,
it is found that using a power function of performance
(such asa2, a3, etc.) is more effective than the simple
performance-level weighting [9]. Another option is to use
multiple linear regression to obtain suitable weights, which
can be derived from the geometric probabilistic frame-
work [15].

Suppose there arem queries, n information retrieval
systems, and a total ofr documents in a document collection
C. For each queryqi, all information retrieval systems
provides scores for all the documents in the collection.
Therefore, we have(si

1k, si
2k, ..., si

nk, yi
k) for {i=(1, 2, ...,

m), k=(1, 2, ...,r)}. Heresi
jk stands for the score assigned

by retrieval systemirj to documentdk for queryqi; yi
k is the

judged relevance score ofdk for queryqi. If binary relevance
judgment is used, then it is 1 for relevant documents and 0
otherwise.

Now we want to estimate

Y = {yi
k; i = (1, 2, ..., m), k = (1, 2, ..., r)}

by a linear combination of scores from all component
systems. The least squares estimates of theβ’s are the values
β̂0, β̂1, β̂2, ..., andβ̂n for which the quantity

u =
m∑

i=1

r∑

k=1

[yi
k − (β̂0 + β̂1s

i
1k + β̂2s

i
2k + ... + +β̂nsi

nk)]
2

is a minimum. In the least squares sense the coefficients
obtained by multiple linear regression can bring us the
optimum fusion results by the linear combination method,

Table I
SUMMARY INFORMATION OF THE “B LOG06” TEST COLLECTION AND

ITS CORRESPONDING STATISTICS

Quantity Value
Number of Unique Blogs 100,649
RSS 62%
Atom First Feed Crawl Last Feed Crawl 21/02/2006
Number of Feeds Fetches 753,681
Number of Permalinks 3,215,171
Number of Homepages 324,880
Total Compressed Size 25GB
Total Uncompressed Size 148GB
Feeds (Uncompressed) 38.6GB
Permalinks (Uncompressed) 88.8GB
Homepages (Uncompressed) 20.8GB

since they can be used to make the most accurate estimation
of the relevance scores of all the documents to all the queries
as a whole.

Another related problem is how to obtain reliable scores
for retrieved documents. One common linear score normal-
ization method is: for any list of scores (associated with
a ranked list of documents) for a given topic or query,
we map the highest score into 1, the lowest score into
0, and any other scores into a value between 0 and 1
accordingly. This normalization method was used by Lee [8]
and others in their experiments with TREC data sets. The
above normalization method can be improved. In the TREC
workshop, each system is usually required to submit 1000
documents for any given query. In such a situation, the
top-ranked documents in the list are not always relevant,
and the bottom-ranked documents are not always irrelevant.
Therefore, [a, b]: (0 < a < b < 1) should be a more suitable
range than [0,1] for score normalization [16]. This method is
referred to as the fitting (linear score normalization) method
later in this paper.

If only a ranked list of documents is provided without
any scoring information, then we need to convert ranking
information into scores. A common way of dealing with
this is to assign a given score to documents at a particular
rank. For example, Borda count [6] works like this: for a
ranked list oft documents, the first document in the list is
given a score oft, the second document in the list is given
a score oft − 1, ..., the last document in the list is given a
score of 1. Thus all documents are assigned corresponding
scores based on their rank positions.

III. E XPERIMENTAL SETTINGS AND RESULTS

In the TREC 2008 blog track, “Blog06” test collection
was used. The summary information is shown in Table
1 [17].

Opinion retrieval is one of the tasks in the blog track. It
is used to locate blog posts that express an opinion about a
give target. A target can range from the name of a person
or organization to a type of technology, a new product, or
an event.

For most opinion retrieval systems, the opinion finding is
a two-stage process. The first stage is to generate baseline
ad hoc retrieval runs. 5 standard baselines were provided
by NIST (National Institute of Standards and Technology,
holder of TREC workshops) for the 2008 Blog track. Infor-
mation about them can be found in [11]. Then, based on any
of these baselines, the participants can submit their final runs
by re-ranking a baseline run. 19 groups submitted a total of
191 runs to the opinion-finding task.

Each submitted run consists of up to 1000 retrieved
documents for each topic. The retrieval units are the doc-
uments from the permalinks component of the Blog06 test
collection. The content of a blog is defined as the content
of the post itself and all the comments to the post.

Analogous to other TREC tracks, the blog track uses the
pool policy for retrieval evaluation: pools were formed from
the submitted runs of the participants. The two highest prior-
ity runs per group were pooled to depth 100. The remaining
runs were pooled to depth 10. Only those documents in the
pool are judged. All the documents that are not in the pool
are treated as irrelevant documents.

In the experiment, two score normalization methods,
Borda and the fitting method, are used. For the fitting
method, 0.8987 and 0.0586 are used as the values fora and
b, which are obtained from the observation of all the runs
submitted. The data fusion methods involved are: CombSum,
CombMNZ, LCP, LCP2, and LCR are tested. A total of 150
topics (851-950, 1001-1050) were used in the 2008 Blog
track. We divide all 150 topics into three groups of equal
size. Topics are put into groups in turn: topic 851 goes to
group 1, topic 852 goes to group 2, topic 853 goes to group
3, and so on. One group (1, or 2, or 3) is used as training
data to decide the weights for the linear combination method,
two other groups (2 and 3, or 1 and 3, or 1 and 2) are used
as test data. For all the data fusion methods involved, we
randomly selected 5, 10, 15,..., 60 component systems from
all available ones to test fusion effectiveness. For any given
number, 200 combinations were carried out.

Four metrics are used for retrieval evaluation. They are:
average precision over all relevant documents (AP), recall-
level precision (RP), precision at 10 document level (P@10),
and reciprocal rank (RR).

They are defined as:

AP = 1
R

∑n

i=1 (rel(di) ∗ p@i)

RP = p@R

R

P@10 = 1
10 ∗

∑10
i=1 rel(di)

RR = maxi≥1{
rel(di)

i
}

Here rel(di) = 1 if documentdi is relevant; 0 otherwise.
R is the total number of relevant documents in the whole
collection.

First let us use average precision to evaluate the experi-
mental results. Tables 2 to 5 present the experimental results
with two different score normalization methods. From Tables

2 to 5, we can see that, generally speaking, all data fusion
methods are effective5. First let us look at the result using
MAP (Tables 1-2). On average, all of them outperform the
best component system. The smallest improvement rate over
the best is 2.62% for CombMNZ with the fitting linear
normalization method, and the largest improvement rate
over the best is 10.26% for LCR with the fitting method.
However, the number of component systems is an important
factor that affects the performance of most data fusion
methods significantly. When a small number of component
systems are fused, all data fusion methods outperform the
best component system by a clear margin. When the number
of component systems is above a threshold, some data fusion
methods become less effective than the best component
system, though such a threshold varies considerably across
different data fusion methods and score normalization meth-
ods. With all two normalization methods, CombMNZ is the
worst, which followed by CombSum, LCP, and LCP2, while
LCR is the best. Two tailed T test is also carried out to test
the significance of the difference between any data fusion
method and the best component system. If the difference is
significant at the level of 0.95, then a “+” or “-” sign will
be put as a superscript of the corresponding value. Figures
on bold are the best in that line (setting). In 22 out of a total
of 24 settings, LCR is the best; LCP2 is the best in the rest
two settings.

Tables 4 and 5 present the results using MRR as the metric
for retrieval evaluation. From Tables 4 and 5, we can see that
for MRR, the impact of different normalization methods on
the data fusion methods is stronger than that for MAP. When
Borda normalization is used, LCR manages an improvement
rate of 2.49% over the best component system. It is slightly
worse than LCP (2.69%) and LCP2 (2.84%). But LCR
is still the best when the fitting normalization method is
used. When the fitting linear normalization method is used,
CombMNZ becomes the second best data fusion method
with an improvement rate of 2.35%.

Figure 1 shows the result of data fusion methods using
RP, while Figure 2 shows the result of data fusion methods
using P@10. In both Figures 1 and 2, for each data fusion
method, only the best result is presented with one of the two
score normalization methods.For both RP and P@10, all data
fusion methods are better than the best component systems
when a small number of results are fused. However, when
a large number of results are fused, only LCR consistently
outperforms the best component system.

In summary, one major observation from this study is: in
most cases, the combination of the fitting method for score
normalization and multiple linear regression for weights
assignment is the most effective approach, especially when
a relatively large number of component systems are fused.

5Each data value in Tables 2-5 and Figures 1-2 is the average of200
randomly selected combinations× 100 queries per test set× 3 different
test sets.

Table II
PERFORMANCE(MAP) OF ALL DATA FUSION METHODS (BORDA

NORMALIZATION ; LCP, LCP2,AND LCR DENOTE THE LINEAR

COMBINATION METHOD WITH PERFORMANCE LEVEL WEIGHTING,
PERFORMANCE SQUARE WEIGHTING, AND WEIGHTS DECIDED BY

MULTIPLE LINEAR REGRESSION, RESPECTIVELY; FIGURES WITH“+” OR

“-” INDICATE THEY ARE DIFFERENT(BETTER OR WORSE) FROM THE
BEST COMPONENT SYSTEM SIGNIFICANTLY AT A CONFIDENCE LEVEL

OF 95%;FIGURES ON BOLD ARE THE BEST IN THAT LINE)

Num. Best C’Sum C’MNZ LCP LCP2 LCR
5 0.378 0.416+ 0.410+ 0.425+ 0.428+ 0.441+

10 0.403 0.447+ 0.438+ 0.454+ 0.458+ 0.454+

15 0.417 0.458+ 0.447+ 0.464+ 0.467+ 0.464+

20 0.431 0.467+ 0.456+ 0.472+ 0.476+ 0.478+

25 0.442 0.472+ 0.460+ 0.477+ 0.481+ 0.484+

30 0.449 0.473+ 0.461+ 0.478+ 0.483+ 0.490+

35 0.451 0.476+ 0.464+ 0.480+ 0.483+ 0.489+

40 0.460 0.475+ 0.463 0.480+ 0.484+ 0.490+

45 0.468 0.478+ 0.466 0.483+ 0.487+ 0.495+

50 0.471 0.480+ 0.468 0.485+ 0.489+ 0.497+

55 0.473 0.480 0.468 0.484+ 0.489+ 0.494+

60 0.481 0.481 0.469− 0.486+ 0.491+ 0.501+

Ave. 0.444 0.467 0.456 0.472 0.476 0.481
5.28% 2.77% 6.70% 7.42% 8.52%

Table III
PERFORMANCE(MAP) OF ALL DATA FUSION METHODS (THE FITTING

LINEAR NORMALIZATION)

Num. Best C’Sum C’MNZ LCP LCP2 LCR
5 0.378 0.417+ 0.412+ 0.423+ 0.425+ 0.425+

10 0.403 0.447+ 0.440+ 0.451+ 0.453+ 0.459+

15 0.417 0.455+ 0.448+ 0.458+ 0.461+ 0.473+

20 0.431 0.462+ 0.456+ 0.465+ 0.468+ 0.488+

25 0.442 0.467+ 0.460+ 0.470+ 0.473+ 0.493+

30 0.449 0.467+ 0.460+ 0.470+ 0.473+ 0.498+

35 0.451 0.468+ 0.462+ 0.470+ 0.473+ 0.497+

40 0.460 0.468+ 0.462 0.471+ 0.474+ 0.501+

45 0.468 0.471+ 0.464− 0.473+ 0.477+ 0.506+

50 0.471 0.472 0.466− 0.474 0.477+ 0.507+

55 0.473 0.472 0.466− 0.474 0.478 0.508+

60 0.481 0.473− 0.466− 0.475− 0.479 0.511+

Ave. 0.444 0.462 0.455 0.464 0.468 0.489
4.08% 2.62% 4.69% 5.41% 10.26%

Table IV
PERFORMANCE(MRR) OF ALL DATA FUSION METHODS (BORDA

NORMALIZATION)

Num. Best C’Sum C’MNZ LCP LCP2 LCR
5 0.804 0.833+ 0.832+ 0.845+ 0.849+ 0.842+

10 0.824 0.864+ 0.861+ 0.870+ 0.872+ 0.869+

15 0.835 0.872+ 0.868+ 0.876+ 0.877+ 0.875+

20 0.851 0.882+ 0.878+ 0.884+ 0.885+ 0.884+

25 0.859 0.884+ 0.880+ 0.886+ 0.888+ 0.885+

30 0.863 0.884+ 0.880+ 0.887+ 0.888+ 0.884+

35 0.865 0.888+ 0.885+ 0.8871+ 0.888+ 0.885+

40 0.871 0.886+ 0.881+ 0.887+ 0.888+ 0.884+

45 0.877 0.888+ 0.883+ 0.888+ 0.889+ 0.885+

50 0.880 0.888+ 0.884 0.889+ 0.890+ 0.887+

55 0.881 0.889+ 0.882 0.888+ 0.888+ 0.888+

60 0.888 0.890 0.884− 0.884− 0.890 0.887
Ave. 0.858 0.879 0.875 0.881 0.883 0.880

2.44% 2.02% 2.69% 2.84% 2.49%

Table V
PERFORMANCE(MRR) OF ALL DATA FUSION METHODS (THE FITTING

LINEAR NORMALIZATION)

Num. Best C’Sum C’MNZ LCP LCP2 LCR
5 0.804 0.838+ 0.837+ 0.840+ 0.839+ 0.830+

10 0.824 0.857+ 0.857+ 0.858+ 0.858+ 0.858+

15 0.835 0.864+ 0.865+ 0.864+ 0.865+ 0.870+

20 0.851 0.871+ 0.873+ 0.871+ 0.873+ 0.882+

25 0.859 0.874+ 0.877+ 0.874+ 0.875+ 0.885+

30 0.863 0.873+ 0.877+ 0.873+ 0.875+ 0.891+

35 0.865 0.873+ 0.878+ 0.874+ 0.876+ 0.886+

40 0.871 0.874 0.879+ 0.874 0.877+ 0.890+

45 0.877 0.876 0.881+ 0.876 0.878 0.892+

50 0.880 0.879 0.884+ 0.879 0.881 0.891+

55 0.881 0.879 0.884 0.878 0.880 0.890+

60 0.888 0.880 0.885 0.880− 0.881− 0.896+

Ave. 0.858 0.870 0.873 0.870 0.871 0.880
1.38% 2.35% 1.40% 1.54% 2.56%

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 5 10 15 20 25 30 35 40 45 50 55 60

P
er

fo
rm

an
ce

 (
R

P
)

of
 th

e
da

ta
 fu

si
on

 m
et

ho
ds

Number of component systems involved

Best
CombSum(Borda)

CombMNZ(Regression)
LCP(Borda)

LCP2(Borda)
LCR(Regression)

Figure 1. Performance (RP) comparison of different data fusion methods
for each given number of component systems (for each data fusion method,
only the best performance is presented with the corresponding score
normalization method that is indicated in parentheses)

 0.6

 0.64

 0.68

 0.72

 0.76

 0.8

 5 10 15 20 25 30 35 40 45 50 55 60

P
er

fo
rm

an
ce

 (
P

@
10

)
of

 th
e

da
ta

 fu
si

on
 m

et
ho

ds

Number of component systems involved

Best
CombSum(Borda)
CombMNZ(Borda)

LCP(Borda)
LCP2(Borda)

LCR(The fitting method)

Figure 2. Performance (P@10) comparison of different data fusion
methods for each given number of component systems (for eachdata fusion
method, only the best performance is presented with the corresponding
score normalization method that is indicated in parentheses)

On average, the improvement rate over the best component
system is 10.26% for MAP, 4.51% for RP, 4.03% for P@10,

and 2.56% for MRR.
Apart from the above one, we also have some other

observations as follows:

1) CombSum and CombMNZ are always close. Most of
the time CombSum is a little better than CombMNZ.
Sometimes the difference is significant, sometimes it
is not.

2) With very few exceptions, LCP2 is always a little
better than LCP. The difference between them is very
often significant.

3) On average, LCP2 is the second best method in
the experiment. It consistently outperforms the best
component system when 35 or less systems are fused.

4) When a relatively small number (say, 5 or 10) of
component systems are fused, then all data fusion
methods outperform the best component system by a
clear margin.

5) Compared with the best system, all the data fusion
methods are more effective on average. However, the
improvement rate varies when different metrics are
used. The most favourable metric is AP, followed by
RP and P@10, while RR is the least favourable.

6) For CombSum, CombMNZ, LCP, and LCP2, Borda is
better; for LCR, the fitting method is better.

IV. CONCLUSION

In this paper we have presented a piece of work on data
fusion to improve effectiveness of blog opinion retrieval.
Extensive experimentation, with one large data set including
all 191 runs submitted to the blog opinion task in TREC
2008, has been conducted and the results shows that on
average, all data fusion methods involved are at least as
good as the best component systems. Among them, the
linear combination method with weights trained by multiple
linear regression (LCR) and the linear combination with
performance square weighting (LCP2) perform better than
the others. This study demonstrates that data fusion can be a
very good approach for us to develop effective blog retrieval
systems.

REFERENCES

[1] H. Du and C. Wagner, “Learning with weblogs: enhancing
cognitive and social knowledge consstruction,”IEEE Trans-
actions on Professional Communication, vol. 50, no. 1, pp.
1–16, October 2007.

[2] Y. Huang, T. Huang, and Y. Huang, “Applying an intelli-
gent notification mechanism to blogging systems utilizing a
genetic-based information retrieval approach,”Expert Systems
with Applications, vol. 37, no. 1, pp. 705–715, January 2010.

[3] Y. Lin, H. Sundaram, Y. Chy, J. Tatemura, and B. Tseng,
“Detecting splogs via temporal dynamics using self-similarity
analysis,”ACM Transactions on Web, vol. 2, no. 1, pp. 1–35,
February 2008.

[4] M. Thewall and L. Hasler, “Blog search engines,”Online
information review, vol. 31, no. 4, pp. 467–479, 2007.

[5] O. Vechtomova, “Facet-based opinion retrieval from blogs,”
Information Processing & Management, vol. 46, no. 1, pp.
71–88, 2010.

[6] J. A. Aslam and M. Montague, “Models for metasearch,” in
Proceedings of the 24th Annual International ACM SIGIR
Conference, New Orleans, Louisiana, USA, September 2001,
pp. 276–284.

[7] M. Farah and D. Vanderpooten, “An outranking approach for
rank aggregation in information retrieval,” inProceedings of
the 30th ACM SIGIR Conference, Amsterdam, The Nether-
lands, July 2007, pp. 591–598.

[8] J. H. Lee, “Analysis of multiple evidence combination,”in
Proceedings of the 20th Annual International ACM SIGIR
Conference, Philadelphia, Pennsylvania, USA, July 1997, pp.
267–275.

[9] S. Wu, Y. Bi, X. Zeng, and L. Han, “Assigning appropriate
weights for the linear combination data fusion method in in-
formation retrieval,”Information Processing & Management,
vol. 45, no. 4, pp. 413–426, July 2009.

[10] S. Wu and S. McClean, “Improving high accuracy retrieval
by eliminating the uneven correlation effect in data fusion,”
Journal of American Society for Information Science and
Technology, vol. 57, no. 14, pp. 1962–1973, December 2006.

[11] I. Ounis, C. Macdonald, and I. Soboroff, “Overview of the
trec-2008 blog track,” inProceeding of the 17th Text Retrieval
Conference, Gaithersburg, MD, USA, 2008.

[12] E. A. Fox, M. P. Koushik, J. Shaw, R. Modlin, and D. Rao,
“Combining evidence from multiple searches,” inThe First
Text REtrieval Conference (TREC-1), Gaitherburg, MD, USA,
March 1993, pp. 319–328.

[13] C. C. Vogt and G. W. Cottrell, “Predicting the performance
of linearly combined IR systems,” inProceedings of the
21st Annual ACM SIGIR Conference, Melbourne, Australia,
August 1998, pp. 190–196.

[14] P. Thompson, “Description of the PRC CEO algorithms for
TREC,” in The First Text REtrieval Conference (TREC-1),
Gaitherburg, MD, USA, March 1993, pp. 337–342.

[15] S. Wu, “A geometric probabilistic framework for data fusion
in information retrieval,” inProceedings of the 10th Interna-
tional Conference on Information Fusion, Quebec, Canada,
July 2007, pp. 1–8.

[16] S. Wu, F. Crestani, and Y. Bi, “Evaluating score normalization
methods in data fusion,” inProceedings of the 3rd Asia
Information Retrieval Symposium (LNCS 4182), Singapore,
October 2006, pp. 642–648.

[17] I. Ounis, M. de Rijke, C. Macdonald, G. Mishne, and I. Sobo-
roff, “Overview of the trec-2006 blog track,” inProceeding of
the 15th Text Retrieval Conference, Gaithersburg, MD, USA,
2006.

