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Problem description

o Keywords used for organising and retrieval of
documents (including non textual ones)

e Problem:

Determine keywords automatically

e Operational problem:
— Define relevance measure of terms
— Select collection of terms based on relevance
* Here, just rank



Keywords, world knowledge, informativity

 Relevance of term as keyword depends on:
— Importance of term for the document

— Discriminative power of term within document
collection

— A priori criteria
* In a thesaurus
* right word class,
e non stopword,



World knowledge from statistics

 Problem: What can we do if we do have access to
large document collection ?

— assuming it is a natural document collection

* Importance in the doc collection is (hopefully) a proxy
for the importance of terms in “the world”.

— Importance w.r.t. everything

o Statistics of the collection becomes a source of world
knowledge
— OK to use broad external world knowledge
e E.g. word class of terms



Predicting the term distribution

 keyword is short summary of content of a
document

e Use term distribution of the document as
proxy for the content
— Bag words model.
— Distributional hypothesis (Harris 1954)

 Good keywords should predict the term
distribution of the document



Everything is a distribution

 Term distribution of a document:
— Qq4(t) Is the term distribution of d
— “The fraction of term occurences
found in d, matching t”
« Document distribution of a term
— Q,(d) Is the document distribution of z
— “The fraction of term occurences
matching z, found in d”
 Background distribution of the corpus
— q(t) is the fraction of term occurences matching t



Co-occurrence distribution of a term

e Co-occurrence distribution of a term
pz (t) — Z Qz (d )qd (t)
d

* Average distribution of terms co-occuring
with t .



Co-occurrence of tags
*faverage tag cloud”
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Relevance measure for terms:

* Relevance measure for term z
e Importance:

— Closeness of Pz to document distribution dg
e Specifity _

— Awayness of Pz from background g

e - need to specify distance measure!



Different distance measures for distributions

« Kullback Leibler divergence D(p]|q)

— #bits per term saved by compression on a term stream
using true distribution p instead of estimate g.

* Infinite if p is not divisible by q!

e Jensen Shannon divergence JSD(p,q)

— #bits per term saved by compression using streams
distributed like p and g seperately instead of mixture

* Nalive correlation coefficient r(p,p’;q )
— Cosine similarity of (p-q) and (p’-q)



Relevance measures for terms

* Only weigh closeness of term to document distribution

jsd(z,d) = JSD(p,,q,)

 Weigh closeness of term to document and awayness to corpus

A(z,d)=D(p, lId,)~D(p, |l a) =262<t)log(qqd(f))>

e Correlate differences

r(z,d)=r(p,,q,;q)



Evaluation

 Use 11000 ACM abstracts with keywords.
— #keywords = 1—10, av=4.5
— 27336 distinct keywords,
— 21634 used only once,
— 2 used more than 100 times.
— 21642, consists of more than one word.

 UIMA and GATE based pipeline



Multiword detection

e Imperative to detect multiwords as candidate terms!

Algorithm: detect superabundant combinations taking
word class into account using t-test (see Manning and
Schutze)

detection algorithm identified 4817 multiwords.

Results sensitive to multiword extraction algorithm &, but
all methods evaluated suffer ©.

Only 52% of articles has a keyword that is selected as a
candidate term after preprocessing. 52% is optimal!

Selected terms may be perfectly acceptable keywords



Evaluation BBC dataset

o 2879 BBC Program descriptions (Many very short)
— #keywords =1 -- 22 keywords, av = 2.9
— 1748 distinct keywords,
— 898 used once
— 8 used more than a 100 times,
— 792 keywords consist of multi word.

e Multiword detection algorithm found 168 multiwords.

 57% of articles has a keyword selected as a
candidate term



11000 ACM abstracts
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2879 BBC abstracts
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Conclusion

e Using co-occurence data improves on tf-idf
« Slightly naive correlation coefficient works best.

e There is room for improvement

— Christian Wartena has recently gotten good results with
recommendation by using some clustering, and with doc
retrieval on keywords (CLEF).

— Good multiword detection is really important.
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