

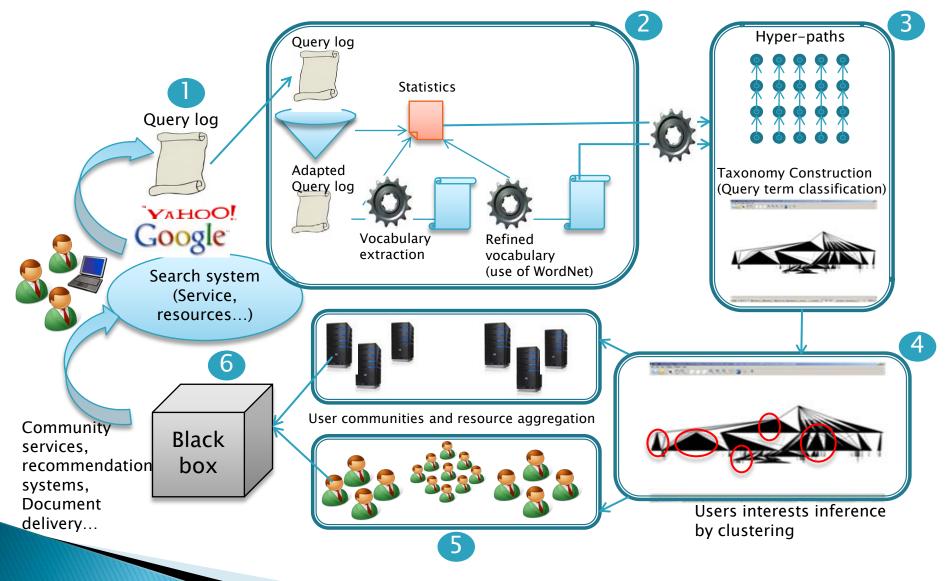
Multimedia Distributed Pervasive and Secure Systems

Extracting user interests from search query logs: a clustering approach

Lyes Limam, David Coquil, Lionel Brunie, Harald Kosch

Presented by: David Coquil David.Coquil@uni-passau.de

DEXA-TIR Workshop, 30.08.2010


Introduction (1)

- User-centric systems
 - Design stage
 - Production stage
- Needs of online user-centrism
 - Gain knowledge from user interactions
- User logs analysis

Introduction (2)

- Query logs analysis
- Semantic analysis
- Textual search queries analysis
 - Semantically: identifying user interests
 - Technically: a query terms clustering problem

Framework for usage analysis

Extracting user interests from search query logs: A clustering approach 30/0

What do we need in our method?

- Restructure the query logs to enable quantifying terms relationships
 - External source of semantic information
- Query terms clustering algorithm
- Semantic distance

Extracting user interests from search query logs: A clustering approach 30/08/2010

WordNet as external source of semantics

(English) WordNet

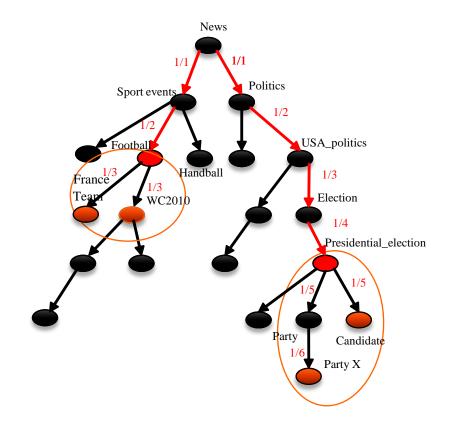
- Large number of synsets
- Hypernymy/(IS-A) relations
- Representation of the logs as a hierarchical structure

Extracting user interests from search query logs: A clustering approach 30/08/2010

Preliminary phases

Preprocessing

- Elimination of unusable queries
- Stop words


Taxonomy construction process

- Vocabulary
- Hypernymy paths
- Virtual nodes

Extracting user interests from search query logs: A clustering approach 23/09/2010

Query term classification (Keywords Taxonomy)

- Global semantic representation of the log
- Defines a metric that measures the semantic distance between the terms

 A base for analysis
query terms clustering process

> *Extracting user interests from search query logs: A clustering approach* 30/08/2010

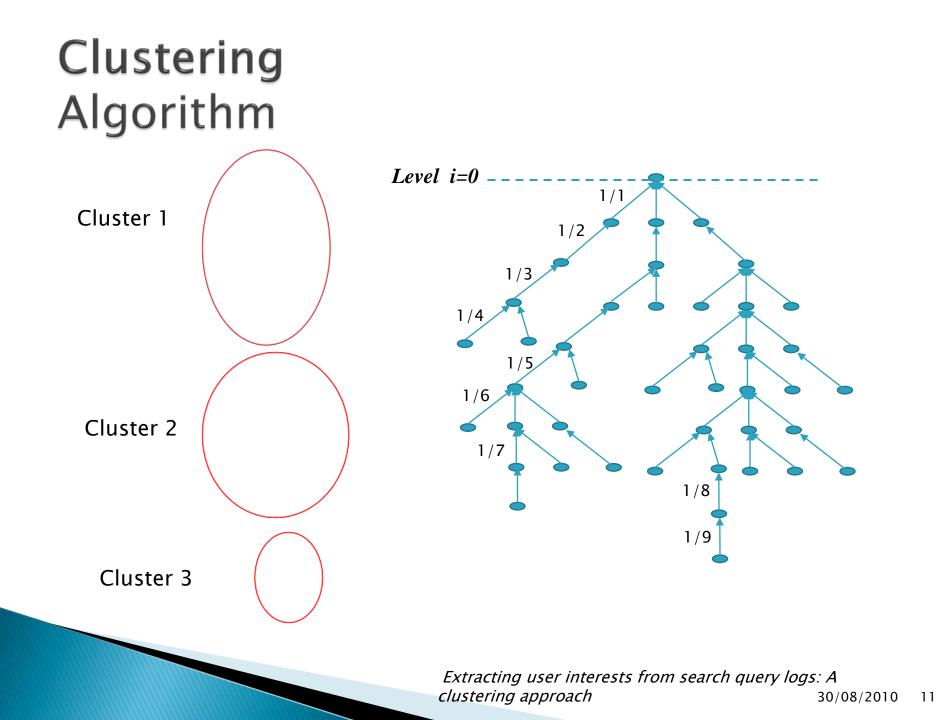
Semantic distance function

- The distance function is defined as follows:
- G(V,E) a tree structure
 - V the set of terms
 - *E the set of edges that models the relationships* term1":is-a" term2
- *Let "L" be a function which returns the level of an element*
- The weight function "W" is defined on "E" as : •

 $\forall (u,v) \in E/u$ is -a''v : W(u,v) = 1/L(v)

- Let $P = \{e_1, ..., e_n\}$ the set of edges in the path (unique) between x and y: $(x,y) \in V^2$ •
- The distance function "D" is defined on V^2 as : •

$$\forall (x, y) \in V^2 : D(x, y) = \sum_{i=1}^n W(e_i)$$


Extracting user interests from search query logs: A clustering approach

Clustering Algorithm

- Groups terms whose all the distances are less than a threshold
- The clusters are constructed by pruning
 - The construction starts from the bottom
- The algorithm :
 - Is deterministic
 - Its complexity is O(n), where n the number of nodes

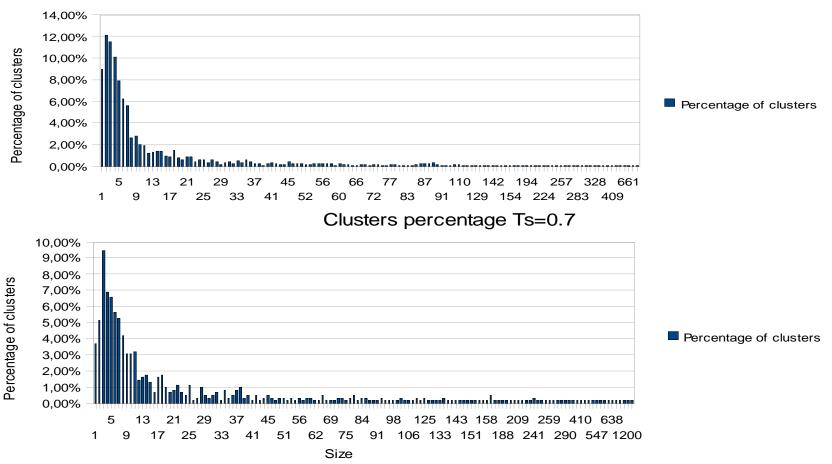
OUERY TERMS CLUSTERING ALGORITHM: T // Taxonomy with weighted links $E = \{e0, e1...\}$ // set of query terms (nodes) $C = \{\}$ // set of clusters //ci Cci =// distance function D ts = Value // threshold While Not (empty(E)) $e_d = deepest(E) // find the deepest term$ $ci = ci \ U \{e_d\}$ // init. ci with the deepest term $cluster_up(e_d, parentOf(e_d))$ $C = C U \{ci\}$ $E=E-\{ci\}$ end End function cluster_up(predecessor, e) function cluster_down(e) If $D(e_d, e) \bullet$ ts If $D(e_d, e) \bullet$ ts *While has_children(e) While* (*has_children(e)*) *if childOf(e)*• *predecessor* cluster down(pull childOf(e)) cluster_down(pull_childOf(e)) end $ci=ci U \{e\}$ end $ci=ci U \{e\}$ endif endif end cluster_up(e, parentOf(e)) End

Extracting user interests from search query logs: A clustering approach 30/08/2010

Evaluation: test dataset

- AOL search logs
- 20 millions of queries collected over 650k users (USA) in a period of 3 months

AnonID	Query	QueryTime	ItemRank	ClickURL
2771158	california hospital association	19.03.2006 23:16		
2771158	glendale adventist medical center	19.03.2006 23:16	1	http://www.glendaleadventist.com
2771158	free electronic greeting card	20.03.2006 22:47		
2771158	csun webct	21.03.2006 08:01		
2771158	the bodega	22.03.2006 01:29		
2771158	the bodega pasadena	22.03.2006 01:29	1	http://losangeles.citysearch.com
2771158	the bodega pasadena	22.03.2006 01:29	2	http://www.pasadenacitycenter.com
2771158	el paseo mall pasadena	22.03.2006 01:35	2	http://www.englekirk.com
2771158	el paseo mall pasadena	22.03.2006 01:35	8	http://www.rubios.com
2771158	the bodega el paseo mall	22.03.2006 01:37		
2771158	the bodega el paseo mall	22.03.2006 01:37	13	http://www.apa.udel.edu
2771158	mapquest	22.03.2006 01:39	1	http://www.mapquest.com
2771158	hollywood fitness private trainers	22.03.2006 01:44		


Extracting user interests from search query logs: A clustering approach 30/08/2010

Evaluation

- Objective cluster quality measures
- Manual study of cluster semantics
- Influence of threshold on cluster distribution

Experimentation (threshold tuning)

Clusters size Ts=0.5

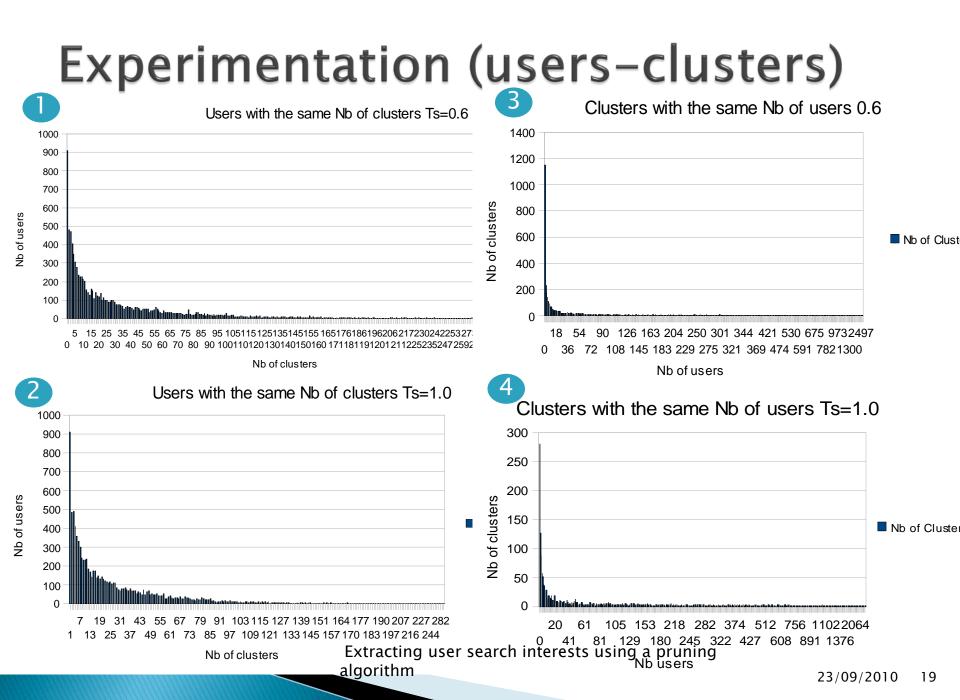
The threshold is determined experimentally by tuning : it balances small clusters and too general clusters

Extracting user interests from search query logs: A clustering approach 30/08/2010

Conclusion... Next step

- Efficient and fast user interests identification
- The threshold could be determined experimentally by tuning
- Clusters are inputs to the user communities discovery and resource aggregation processes
- Next...
 - Improvements/cluster quality evaluation
 - Users profiles/similarity (overlap), resource aggregation
 - Discover other potential applications in the "black box"

Extracting user interests from search query logs: Aclustering approach30/08/201015


Thank you for your attention Any questions ?

Extracting user interests from search query logs: A clustering approach 30/08/2010

Extracting user interests from search query logs: A clustering approach

Users community and resource aggregation

- Depending on the adopted approach (global or local) the users grouping process is realized as :
 - Global: two users are considered to be in one group if they share the same clusters
 - Local: two users are in the same group if their corresponding clusters overlaps

Outline

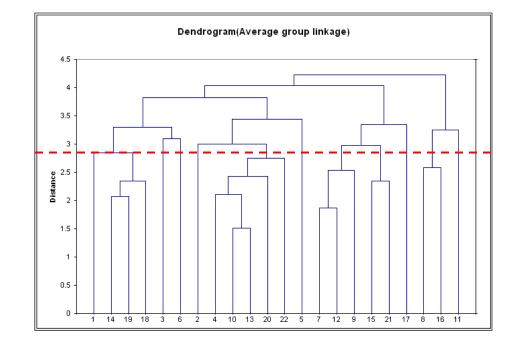
- Issue
- Framework for usage analysis
- Query terms clustering algorithm
- Experimentations
- Users community and resources aggregation
- Conclusion & Next step

Semantic distance function (proposal for improvement)

- In the context of clustering several improvement have been proposed:
 - Include the co-occurrence relationship in the distance function:

$$D'(x,y) = D(x,y) / C[x,y]$$

Include the terms frequency as it reflects the term importance


Extracting user interests from search query logs: A clustering approach 30/08/2010 21 How to measure the efficiency of a distance/similarity measure ?

- Use of human judgment/similarity measure correlation proposed by Miller and Charles, the MC correlation
 - 30 pairs of nouns rated (0-4) by 38 native English speakers

Extracting user interests from search query logs: Aclustering approach30/08/2010

Existing algorithms for clustering

- Hierarchical algorithms
 - Single linkage
 - Complete linkage
 - Average linkage
- Partitioning algorithms
 - K-means
- Graph algorithms
 - Neighborhood graph algorithm (spanning tree)
 - B-coloring

Extracting user interests from search query logs: A clustering approach 30/08/2010