
Towards a search system for the Web
exploiting spatial data of a web document

Stefan Dlugolinsky, Michal Laclavik, Ladislav Hluchy

Institute of Informatics, Slovak Academy of Sciences

Page  2

Introduction

 Full text search services like
– Google
– Yahoo!
– MSN
– ...

determine the relevance of the web document by its content and
importance (PageRank).

 Sometimes, we would like to prefer results, whose relevance is
determined by a distance from us, where the distance is measured from
the business location presented in the web document.

 Examples:
– We are going to visit Bilbao and we are looking for a hotel.
– We are looking for the nearest shopping centre, restaurant, pharmacy, etc.

Page  3

 Geographic distance of a web document
Under a document's geographic distance, we understand the distance
between a search reference point and a geographic location related to the
document.

Introduction

Web document Reference point

Document distance

Page  4

Introduction

 Present search services like

1. Google Maps http://maps.google.com/

2. Yahoo Maps http://maps.yahoo.com/

3. ZlateStranky.sk (Slovak Yellow pages) http://www.zlatestranky.sk/

4. Kompas.sk http://mapy.zoznam.sk/

5. MAPY.SK http://mapy.atlas.sk/

6. Umkreisfinder http://www.umkreisfinder.de/

search documents by distance, BUT

– the search domain is created manually by users (1, 2), or built from the content of service
catalogs – registered companies (3, 4)

– some search services (5) search only within a set of geographic object names (street names, city
names, ...)

– geographic location must be explicitly set by special HTML meta tag, or is known by an URLof the
document (6)

Page  5

Introduction

 Our goal was to create a search service which could:

– automatically create its search domain (web documents)

– automatically determine geographic positions related to web documents

– search web documents by geographic distance according to search query

 Above tasks rose up main problems, which should be treated:

– Assigning geographic locations to a web document

• Extraction of geographic entities from the documents

• Geocoding extracted entities

– Indexing documents by related geographic positions

– Search by distance

Page  6

The core of the system

 We used NUTCH search engine as the basis of our search system,
which:

– is open source and platform independent (Java)

– is built on LUCENE text search engine library – an implementation of high-
performance indexing and searching

– includes web crawler for crawling web documents

– includes parsers for different types of documents (HTML, PDF, RTF, ...)

– except LUCENE, it has also integrated HADOOP, an open-source
implementation of frameworks for reliable, scalable, distributed computing and
data storage

– has a plug-in system for easy extension

Page  7

DistanceSearch plug-in

 We have built the search system extending NUTCH by our plug-in
DistanceSearch and also by customizing the user interface.

 The DistanceSearch plug-in deals with three main issues:

– Extraction of geographic coordinates from web documents and
geocoding

– Indexing by geographic distance

– Search by geographic distance

Page  8

Determining the geographic location of the document

 Strategy:

– Extract all the possible geographic entities from the textual content of the
document:

• GPS coordinates (more accurate, no geocoding)

• Postal addresses (less accurate, requires geocoding)

– Geocode all the found street addresses to geographic coordinates

 Extracted coordinates are the input for the indexing process

GPS coords.
Addresses

Latitude and Longitude
48.1668595, 17.1032454
48.1441842, 17.1095594
48.1099847, 17.1146532

Page  9

Geographic entity extraction

 Extraction model

– Based on regular expressions (regexes)

– Extracted entities are in the form of key-value pairs

• for example. "sk.address.street.name" => "Jasovska”

– We define extraction patterns by custom meta-language in XML

• simple modification of extraction patterns

• easily expandable with new extraction patterns

• extraction model supports macros and naming of regex back references (it is
easier to create complex patterns and reuse them in other patterns)

Page  10

An example of address extraction pattern

<pattern name=“Postcode" class=“Postcode">
 <regexp><![CDATA[[0-9]{3}\s*[0-9]{2}]]></regexp>
</pattern>

<pattern name=“Word">
 <regexp><![CDATA[(\p{Lu}\p{Ll}*|\p{Ll}+)]]></regexp>
</pattern>

<pattern name=“Name">
 <regexp><![CDATA[(\p{Lu}\p{Ll}+)]]></regexp>
</pattern>

<pattern name=“StreetName" class=“StreetName">
 <regexp><![CDATA[\p{#Name}\.?(+\p{#Word}\.?)?(+\p{#Word}\.?)?(+\p{#Word}\.?)?]]></regexp>
</pattern>

<pattern name=“BuildingNumber" class=“BuildingNumber">
 <regexp><![CDATA[([1-9][0-9]{0,3} *[/-] *)?([1-9]|[1-9][0-9])(/?[a-zA-Z])?]]></regexp>
</pattern>

<pattern name=“CityName" class=“CityName">
 <regexp><![CDATA[\p{#Name}(+\p{#Name})?]]></regexp>
</pattern>

<pattern class=“Address">
 <regexp><![CDATA[\p{#CityName} +\p{#BuildingNumber}(,\s*|\s+)\p{#Postcode}\s+\p{#CityName}]]></regexp>
</pattern>

macros

pattern

Macro
reference

regex

Page  11

Geographic entity extraction

Extraction patterns:

– 2 extraction patterns for Slovak postal address extraction. Patterns deal
with the diversity of city and street naming, also building numbering:

• (<StreetName> <BuildingNumber>?)?<Postcode> <CityName>

• (<StreetName> <BuildingNumber>?)?<CityName> <Postcode>

– 4 extraction patterns for GPS coordinate extraction

Page  12

Geocoding of postal addresses

 Geocoding
a process of converting postal addresses or known geographic object names
(landmarks, institutions, etc.) into geographic coordinates.

 The original idea was to create our own geocoding service using gazetteer.

– We designed, implemented and verified data model of the gazetteer, filled it with
addresses and got hierarchical structure of related street names, postcodes, city
names, county names and region names, according to Slovak address format

– However, we did not have very precise geographic data. Therefore we were able to
geocode addresses only up to the level of street names (without exploiting extracted
building numbers, what would be more precise)

 For the reason to be more precise in geocoding, we have decided to use
external geocoding services

– Google

– Yahoo

 We cache all calls to geocoding services into the database (it is due to each
service request limits and recrawling optimalization)

Page  13

Indexing

 We wanted to index web document by more than just a one
geographic location - the problem: LUCENE's indexing
capabilities inside NUTCH (supports only string values) and
tightness between indexing and searching (need to be fast)

 Efforts to represent latitude and longitude in one string, a hash.

 The idea: „0223“

„0221“

Page  14

Indexing

 Hierarchical Triangular Mesh method (http://www.skyserver.org/htm/index.html)

– Developed with a grant support of NASA (for use in digital astronomical maps).

– Built on the same principle, but divides the spherical surface into the triangles:

– The precision of HTM index grows with the level of triangle subdivision (the resolution at the level 25 is about 0.6
m)

– We use HTM index to index document by its related geographic coordinates.

• An example: 48.1668595 17.1032454 => N33133121001121003031

Feature: If there are two points with common prefixes, they are close to each other. The more longer prefix they
share, the closer they lie to each other.

Page  15

Search

 The principle of search:

Extension of the generated NUTCH query by an area search query
based on HTM region prefixes.

1. A set of common HTM prefixes is computed for triangles within the search
area.

Page  16

Page  17

Search

2. There is a prefix subquery created for each computed common HTM
prefix:

PKi = PrefixQuery("htm", prefixi)

3. Prefix subqueries are joined into an area search query:

(PK1 OR PK2 OR ... PKn)

4. The area search query is then added to the generated NUTCH query:

(NUTCH query) AND (PK1 OR PK2 OR ... PKn)

1.E
xtended Nutch query is fulfilled for each document, which is relevant
to original query and “lies” in the search region.

Page  18

Evaluation of address extraction

 Set of test web documents

– Google catalogue, section “Bratislava” and Slovakia”

Page  19

Distributed crawling and its results

 We installed crawler on a cluster with 8 nodes, each with the following
configuration:

 We have configured Hadoop to simultaneously run 8 jobs on every node,
i.e. 64 parallel jobs on whole cluster.

Crawling start:

max. level 10
limit 100 000 / level

Page  20

Comparison with similar services

Page  21

Searcher user interface

Map viewport
• defines search area (reference
 point is in the middle of the map)
• display of results

Search query input field

Search results details

List of results
• results are ordered by distance
from the reference point

Page  22

Conclusion

 Advantages:

– Automatic address extraction and geocoding with high recall

– Address and GPS extraction patterns are easily extensible

– Documents are indexed by more than just a one related geographic location

– Distributed crawling+extraction+indexing

– External geocoding services can be used

– Caching geocoding calls (decreases direct calls to geocoding services when recrawling)

– Results are shown on a map

 Disadvantages and future work:

– Lower extraction precision, but new patterns can improve it. Currently we have integrated
also GATE (General Architecture for Text Extraction) in Nutch and trying it.

– Geographic entity extraction does not handle with microformats, RDF in XHTML, embeded
maps (Google Maps, Yahoo Local Maps, ...)

– Geographic positions are associated only with their parent pages, but sometimes they
could be associated with pages linked to their parent page (a future work challenge)

Thank you

Page  24

DistanceSearch plug-in

Diagram of DistanceSearch plug-in integration in NUTCH

Page  25

Geocoding of postal addresses

	Towards a search system for the Web exploiting spatial data of a web document
	Introduction
	Slide 3
	Slide 4
	Slide 5
	The core of the system
	DistanceSearch plug-in
	Determining the geographic location of the document
	Geographic entity extraction
	An example of address extraction pattern
	Slide 11
	Geocoding of postal addresses
	Indexing
	Slide 14
	Search
	Slide 16
	Slide 17
	Evaluation of address extraction
	Distributed crawling and its results
	Comparison with similar services
	Searcher user interface
	Conclusion
	Thank you
	Slide 24
	Slide 25

