
Towards a search system for the Web exploiting spatial data of a web document

Stefan Dlugolinsky
Institute of Informatics

Slovak Academy of Sciences
Dubravska cesta 9

845 07 Bratislava, Slovakia
stefan.dlugolinsky@savba.sk

Michal Laclavik
Institute of Informatics

Slovak Academy of Sciences
Dubravska cesta 9

845 07 Bratislava, Slovakia
laclavik.ui@savba.sk

Ladislav Hluchy
Institute of Informatics

Slovak Academy of Sciences
Dubravska cesta 9

845 07 Bratislava, Slovakia
ladislav.hluchy@savba.sk

Abstract—In this paper, we describe our work in progress in
the scope of information retrieval exploiting the spatial data
extracted from web documents. We discuss problems of a
search for web documents by geographic distance, where the
geographic distance of a document is determined automatically
using information extraction methods. We present here our
approach of building a distributed search system, which deals
with several problems of this area. Search by geographic
distance is useful, for example if we are looking for the nearest
restaurant, hotel or any other business near our location
(reference point). Almost every company today presents its
business on the Internet sharing business information along
with contact information. There can be miscellaneous
geographic information extracted from the contact information
(but no only from it) and used to compute geographic distance
of a document. Under a document's geographic distance, we
understand the distance between a search reference point and
a geographic location related to the document. In our
approach, we chose postal addresses and GPS coordinates for
spatial data extraction. The reference point can be dynamically
changed and one document can be related to more than one
geographic location. Geographic locations are automatically
discovered in document's textual content. Document is then
indexed by all its known geographic locations, so later when
searching, the document can be found near different
geographic locations to which it is related. Domain of the
search is automatically built by crawling through linked web
documents.

Keywords-web crawling; information extraction; information
retrieval; geo-coding;

I. INTRODUCTION
Search on the web by geographic distance covers several

problems. It is information extraction, geo-coding, indexing
and searching. At first, it is important to identify a
geographic location of web document. Under a document’s
geographic location, we do not understand document’s
physical location, which could be examined from an IP
address of its web server, but we understand a location or
locations, which are related to a textual content of the
document. Here we need to analyze the document and
extract as much as possible geographic information from it,
such as postal addresses, GPS coordinates, etc. Then we
need to use this information to determine geographic
coordinates. It is a geo-coding process. As soon as we have
geographic coordinates, we can index the document. This is

the next problem, because indexing significantly affects
searching. We need to index and search documents by their
geographic positions considering that we can change the
reference point between searches. In the next chapters, we
describe, how we dealt with the mentioned problems and
how we built a search service, which is able to search web
documents by geographic location and sort them by their
distance from the reference point.

II. RELATED WORK
There are many information systems, which have

something to do with searching in the maps. Well known are
Google Maps1, YellowPages.com2 or Yahoo! Local Maps3.
Search domain of these and other existing systems is
generally built by users, who submit the location and
description of their businesses into the system. Search
domain of such systems is also built from specialized
catalogues (e.g. restaurant or hotel catalogues). Our approach
was to build search service, which automatically builds its
search domain by crawling the web. There is a GeoPosition4
plug-in for Nutch5 web-search system, which automatically
retrieves geographic position of the document from its
content, but with the limitation of one geographic position
per document. In addition, geographic position must be
explicitly defined by special meta tag [5]. In our solution, we
also use Nutch web-search system, but we are able to
automatically extract more than one geographic position
from the document’s textual content and index the document
by all extracted geographic positions. In the following
chapter, we present our web-search system called
DistanceSearch.

III. DISTANCESEARCH
DistanceSearch6 is implemented as a plug-in for Nutch

0.9 web-search system, but with slight modifications of some
Nutch core classes. There is originally Lucene 2.1.0 used in
Nutch 0.9, but we switched to Lucene 2.9.1, because we had
some problems with the older version. The crawl part of the

1 http://maps.google.com/
2 http://www.yellowpages.com/
3 http://maps.yahoo.com/
4 http://wiki.apache.org/nutch/GeoPosition
5 http://lucene.apache.org/nutch/
6 http://distancesearch.ui.sav.sk/

system runs on a Hadoop cluster of 8 nodes, the search part
runs on a single node. More about Experiment environment
can be found in section IV.A. We have crawled about
408,000 documents from Slovak web catalogues, where in
about 58,500 documents 128,000 addresses and 250 GPS
coordinates were extracted.

A. Information Extraction
As mentioned earlier, we extract geographic information

from document’s textual content. Targets of the extraction
are postal addresses and GPS coordinates. These entities are
probably the most precise information describing a
geographic position of the document. Moreover, most
contact information in web documents contains postal
addresses and/or GPS coordinates. Addresses and GPS
coordinates have a formal form of writing, so they can be
easily extracted by regular expressions. Various existing
methods and solutions for information extraction (e.g.
GATE7) and semantic annotation [7] are available. Based on
our previous work and experience [8], we have developed a
simple extraction model (XMLRegExp8), based on Java
regular expressions, which supports named back references
and regular expression macros. This model lets us easily
define basic regular expression macros and combine them
into more complex patterns without bothering with back
reference numbering. Back reference brackets in expressions
can be named and their names will be keys to extracted
values covered by expression between named brackets.
Extraction patterns are defined by meta language in XML
(TABLE I.). There are two types of extraction patterns in
the model. The patterns with a name attribute, which are
macros that can be referenced by their name from other
patterns. Second type is a pattern without name attribute,
which cannot be referenced from other patterns. It is directly
called during extraction and it can refer to macros. Macros
can be referenced from any level of inclusion, but there
cannot be direct or indirect cyclic references. If we imagine
macros and patterns as a connected graph according to their
inclusion, it must be a tree.

An example of Slovak address extraction pattern is
shown in TABLE I. Slovak addresses are written in the form
street_name street_number, postal_code city_name. There
are six macros and one extraction pattern. As we can see, the
last pattern is the extraction pattern, which refers to
STREET_NAME, STREET_NUMBER, POSTAL_CODE
and CITY_NAME macros. These macros refer also to other
macros.

The address extraction pattern is built from the defined
macros according to their inclusion in other macros to the
pattern. The pattern is then used to extract key-value pairs.
Keys are defined by class attribute and tell, what kind of
information is extracted. We can see that the address pattern
extracts five entities: street_name, street_number,
postal_code, city_name and address. Naming of back
reference brackets can be done by groups/group tags within

7 http://gate.ac.uk/
8 http://xmlregexp.sourceforge.net/

pattern tag, which is not presented here. Enhanced regular
expressions are in bold.

TABLE I. AN EXAMPLE OF EXTRACTION PATTERN FOR SLOVAK
ADDRESS EXTRACTION

<pattern name="POSTAL_CODE" class="postal_code">
<regexp><![CDATA[[0-9]{3}\s*[0-9]{2}]]></regexp>
</pattern>

<pattern name="WORD">
<regexp><![CDATA[(\p{Lu}\p{Ll}*|\p{Ll}+)]]></regexp>
</pattern>

<pattern name="NAME">
<regexp><![CDATA[(\p{Lu}\p{Ll}+)]]></regexp>
</pattern>

<pattern name="STREET_NAME" class="street_name">
<regexp><![CDATA[\p{#NAME}\.?(+\p{#WORD}\.?)?(
+\p{#WORD}\.?)?(+\p{#WORD}\.?)?]]></regexp>
</pattern>

<pattern name="STREET_NUMBER" class="street_number">
<regexp><![CDATA[([1-9][0-9]{0,3} *[/-] *)?([1-9]|[1-9][0-
9])(/?[a-zA-Z])?]]></regexp>
</pattern>
<pattern name="CITY_NAME" class="city_name">
<regexp><![CDATA[\p{#NAME}(+\p{#NAME})?]]></regexp>
</pattern>

<pattern class="address">
<regexp><![CDATA[\p{#STREET_NAME}
+\p{#STREET_NUMBER}(,\s*|\s+)\p{#POSTAL_CODE}\s+\p{#CITY_NAME}]]
></regexp>
</pattern>

With this information extraction model, we have tried to
extract as much addresses and GPS coordinates as possible.
Values extracted as postal addresses needed to be converted
to geographic coordinates (geo-coded). The geo-coding
process is described in the next chapter. After we have geo-
coded extracted postal addresses, we indexed the document
by all its associated geographic coordinates, so it could later
be found "near" associated geographic places.

B. Geo-Coding
Extracted postal addresses needed to be geo-coded into

latitude and longitude values. This is the geo-coding process.
We used Google9 and Yahoo!10 geo-coding services to geo-
code extracted addresses. Most of the false extractions (e.g.
strings formatted similarly to addresses) were eliminated in
this process, because they were not geo-coded. We cached
geo-coding results to cut down the number of geo-coding
service requests, which is useful especially when recrawling
previously crawled documents. We used MySQL database
for this purpose.

We have also built our own geo-coding service based on
data from the openstreetmap.org11, but we didn't use it,
because we didn't have sufficiently precise geospatial data to
geo-code addresses at the level of building numbers. We
were able to geo-code addresses only at the level of street
names. We decided to use Google and Yahoo! geo-coding
services, which are able to geo-code addresses at the level of
building numbers and also of postal codes.

9 http://code.google.com/intl/en/apis/maps/documentation/

 geocoding/index.html
10 http://developer.yahoo.com/maps/rest/V1/geocode.html
11 http://wiki.openstreetmap.org/wiki/Planet.osm

C. Document Indexing
While we were looking for a suitable indexing method,

we had to consider Lucene’s indexing capabilities inside
Nutch as well as the tightness between the indexing and the
searching process, as well as the fact that the search
reference point is not static. We considered three options: the
first one was to index document by latitude and longitude,
but we wanted to index a single document by all its
geographic positions, so we had to look for another solution.

The second option was to join latitude and longitude
values into one string and to index document by it, but this
would lead to not very effective searching, because we
would have to split every indexed position and compute its
distance from the given reference point [1].

The third option was to recursively split geographic
surface into hierarchical segments with unique indexes and
use them to index document’s geographic positions [2]. We
have chosen the Hierarchical triangular mesh (HTM)
method, which recursively splits spherical surface into
triangles with unique indexes, where indexes of the bigger
triangles are prefixes of the smaller triangle indexes inside
[3][4]. We use the HTM indexes to index geographic
positions associated with the document. Except the spatial
mapping feature of the HTM method, there is another useful
feature, which we use in searching. If there are two points
with common prefixes, they are close to each other. The
more longer prefix they share, the closer they lie to each
other, but this does not apply in the opposite way, because
there could be a case of two points, very close each other,
where these two points do not have a common prefix. This
could happen in the border areas of big triangles, where each
point lies in different big triangle, but near each other in
smaller triangles. As we will see in the next chapter, this is
not a problem when searching. The precision of indexing
with the HTM method is increasing with the level of triangle
splitting. The precision of indexing Earth's surface with level
25 is near 0.6 m.

D. Document Searching
We search documents according to user query and area of

interest specified in a map by rectangular viewport, where
the centre of the viewport is the reference point of the search.
The distance is limited by the viewport bounds. After the
user submits a search query (e.g. “hotel”), we detect indexes
of the biggest triangles, which fit into the queried viewport,
and use these triangle prefixes to search documents within
the viewport (Figure 1). The documents, which are related to
the viewport area, have common prefixes with the indexes
detected in the viewport. We extend Nutch query by prefix
clauses and get relevant documents from the area specified
by the map viewport only. Then we order the results by
distance using the haversine formula distance computation.
Results are displayed in the map viewport as well as in the
list (Figure 2).

Figure 1. Usage of HTM method for searching and indexing. Indexes of
the bigger triangles N...100 and N...103 are prefixes of the smaller triangle
indexes inside them. Indexes of their smaller triangles are in the N...100*
and N...103* form.

Figure 2. Search interface with map viewport on the left and search
results on the right.

IV. EXPERIMENT AND EVALUATION

A. Experiment environment
One of very important DistanceSearch features should be
scalability. Thus we need to scale at least crawling,
information extraction and indexing. For a real system it
would be important to scale also geo-coding and searching,
but we did not focus on scaling these two tasks since they
perform on much smaller amount of data.
Regarding crawling and indexing, the MapReduce
distributed architecture [6] introduced by Google is now
known as the golden standard. We discuss it further below
together with available implementations.
Concerning information extraction, only very few
approaches such as SemTag [9] or KnowItAll [10] work
with large data sets, but to our best knowledge only SemTag
uses distributed architecture to scale up information
extraction (or semantic annotation) task. In our previous
work [8] we have implemented and tested information

extraction based on regular expression on Grid and
MapReduce distributed architectures.
The MapReduce [6] architecture developed by Google was
used with success in information retrieval tasks. Information
extraction and pattern based annotation use similar methods
such as information retrieval. Google’s MapReduce [6]
architecture seems to be a good choice for both information
retrieval and information extraction for several reasons:

• information processing tasks can benefit from
parallel and distributed architecture with simply
programming the Map and Reduce methods

• architecture can process terabytes of data on PC
clusters with handling failures

• most information retrieval and information
extraction tasks can be ported into MapReduce
architecture, similarly to pattern based information
extraction algorithms. For example, distributed
grep12 using regular expressions, one of basic
examples for MapReduce, is similar to our pattern
approach using regular expressions as well.

• input and output of Map and Reduce methods are
key-value pairs. Porting of our approach is thus
straightforward, which was also proved in [8].

Several open source implementations of MapReduce are
available:

• Hadoop13, developed as Apache project with
relation to Lucene and Nuch information retrieval
systems, implemented in Java. Hadoop is well
tested on many nodes. Yahoo! is currently running
Hadoop on 10 000 nodes in production
environment14.

• Phoenix15, developed at Stanford University,
implemented in C++.

• Disco16 is a project started by Nokia. The Disco
core is written in Erlang. Users of Disco typically
write jobs in Python.

As already mentioned, in our experiment we have used well
known Lucene17 library hidden in related Nutch project.
Nutch offered us all needed information retrieval
capabilities as well as modular architecture where
DistanceSearch plug-in could be integrated. In addition, the
Nutch project was an initiator of Hadoop project and thus
Nutch is quite well integrated with Hadoop architecture.
Thus we have decided to use Hadoop implementation of
MapReduce.

12 Grep is a flexible search-and-replace function that can search one or

more files for specified characters and/or strings
13 http://hadoop.apache.org/
14 http://developer.yahoo.net/blogs/hadoop/2008/02/yahoo-worlds-

largest-production-hadoop.html
15 http://mapreduce.stanford.edu/
16 http://discoproject.org/
17 http://lucene.apache.org

B. Experiment
Since Nutch can also run on Hadoop, we have installed

web crawler of the DistanceSearch system on the cluster of 8
nodes (TABLE II.). Crawler runs independently of searcher.

TABLE II. CLUSTER NODE CONFIGURATION

Processor Intel® Core™ 2 Quad CPU Q9550 2.83GHz
System memory 4 GB
HDD WDC WD7500AACS-0 (750 GB)
OS Linux 2.6.24-19-generic x86_64 GNU/Linux

We have configured Hadoop to simultaneously run 8 jobs
on every node, i.e. 64 parallel jobs on whole cluster.
Searching is realized locally on master node, where we run
Apache Tomcat 6.0.20 web server with searcher application.
We have launched crawling from the following Slovak web
catalogues: http://www.zoznam.sk/, http://www.centrum.sk,
http://www.best.sk/, http://szm.sk/, http://www.atlas.sk/,
http://www.katalog.sk/, http://www.azet.sk/.

URL filter was set to accept only pages from .sk domains
and to accept only text documents (e.g. html, htm, php, txt).
The Nutch crawler was executed with max. depth parameter
set to 10 and max. 100 000 documents per level. The results
of crawling are in the TABLE III. together with the geo-
entity extraction results.

TABLE III. RESULTS OF DISTRIBUTED CRAWLING, EXTRACTION AND
GEO-CODING.

Crawl duration 20h 46m 7s
Crawled data size (index + cache) 8.3 GB
Index size 535.7 MB
Documents crawled 408 096
Documents without entity extraction 349 561 (85.66 %)
Documents with entity extraction 58 535 (14.34 %)
Extracted entities 245 673
Geo-coding requests 21 463
Average number of entities per document 0.60
Recognized GPS coordinates 256
Not geo-coded address extractions 123 731
Geo-coded address extractions 121 686

Crawl was started from 7 Slovak web catalogues mentioned above.

There were 245 673 geographic entities (not unique)
extracted from the set of crawled web documents of size
408 096 documents. This gives 0.6 entities per document,
but it does not mean that 60 % of all crawled documents
contained spatial data, because we had 85.66 % documents
without geo-entity extraction. There were 14.34 %
documents with geo-entity extractions, which gives 4.20
geo-entities per document. But these numbers must be
considered according to geo-entity extraction recall
measure, because some geo-entities were for sure missed.
Because there were too many documents in the crawled set,
we have done manual evaluation of address extraction on
another and smaller set of documents. We have executed the
crawler with max. depth parameter set to 10 and max. 500
documents per level. Crawling was launched from two

Google's catalogue pages18 related to Slovakia and its capital
city Bratislava (TABLE IV.). Low precision of address
extraction (50.37 %) was affected by high rate of false
address extractions. There were extracted strings similar to
address structures, which had nothing to do with real postal
addresses, but most of these extractions were eliminated by
geo-coding and were not converted to geographic positions.
Here is the recall evaluation more important, which tells us
that about 87.5 % of all addresses were extracted.

TABLE IV. EVALUATION OF ADDRESS EXTRACTION ON SMALLER SET
OF DOCUMENTS.

Crawled documents 3183
Relevant documents 380
Addresses in documents 847
Correct address extractions 741
False address extractions 730
Missed address extractions 106
Precision 50.37 %
Recall 87.49 %

TABLE V. COMPARISON WITH SIMILAR SEARCH SERVICES

 D
S

G
P

G
M

Y
L

M

Search domain web web db db

Geodata extraction from document's text ✓ ✗ ✗ ✗
Geodata extraction from special HTML
meta tag ✗ ✓ ✗ ✗

Search in map viewport ✓ ✗ ✓ ✓

Results on map ✓ ✗ ✓ ✓

Sorted results by distance ✓ ✗ ✗ ✗
DS - DistanceSearch, GP - GeoPosition, GM - Google Maps, YLM - Yahoo Local Maps

V. CONCLUSION AND FUTURE WORK
We have created a search system, which is able to search

web documents by the geographic distance. Geographic
position is automatically discovered from the textual content
of the web document and associated with this document.
There can be more than one geographic position associated
with one document. We plan to distribute the search process
from single cluster node to more nodes, like in crawling
process. Moreover, we want to extend sorting of the results,
so they will be ordered by some ratio between the relevance
according to query and to their distance to reference position.
We also see a research challenge in associating a geographic
position to pages, which do not contain any geographical
information, but these pages are related to the page where the
geographic information was found. This case is common to
small websites, for example company presentation sites,
where there is almost always a contact page with company
location information and there are also pages describing the

18 http://www.google.sk/Top/World/Slovensky/Regionálne/Európa/Slo

vensko/, http://www.google.sk/Top/World/Slovensky/Regionálne/Európa/S
lovensko/Bratislavský_kraj/Bratislava/

company's business. The point is to relate spatial information
found on the contact page (but not only on this kind of page)
to the other relevant pages within the website. We believe
that this could give better results when searching for some
business within a map viewport, because contact pages
generally contain only brief information such as the name of
the company, address, telephone numbers, email addresses,
contact persons, etc. More information which can be more
precisely covered by search query is on other than contact
pages. The main problem within this challenge is to cluster
related web pages, because all pages within one domain are
not always contextually related to each other.

ACKNOWLEDGMENT
This work is supported by projects SMART ITMS:

26240120005, SMART II ITMS: 26240120029, VEGA
2/0184/10.

REFERENCES
[1] Gospodnetic, O. and Hatcher, E. Lucene in Action.

Greenwich: Manning Publications Co, 2005. 415 s. ISBN 1-
932394-28-1

[2] Sahr, K., White, D. and Kimerling, A. J. Geodesic Discrete
Global Grid Systems. Cartography and Geographic
Information Science, Vol. 30, No. 2, 2003, pp. 121-134.

[3] Kunszt, P. Z., Szalay, A. S. and Thakar, A. R. Dept. of
Physics and Astronomy, Johns Hopkins University,
Baltimore, MD 21218 in Mining the Sky: Proc. of the
MPA/ESO/MPE workshop, Garching, A.J.Banday, S.
Zaroubi, M. Bartelmann (ed.); (Springer-Verlag Berlin
Heidelberg), 631-637 (2001).

[4] Szalay, A., Gray, J., Fekete, G., Kunszt, P. Z., Kukol, P.
and Thakar, A. Indexing the Sphere with the Hierarchical
Triangular Mesh; Technical Report MSR-TR-2005-123,
2005, http://research.microsoft.com/pubs/64531/tr-2005-
123.pdf.

[5] M. Jaekle. 17. 2. 2006. GeoPosition,
http://wiki.apache.org/nutch/GeoPosition.

[6] Dean J., Ghemawat S.: MapReduce: Simplified Data
Processing on Large Clusters, Google, Inc. OSDI’04, San
Francisco, CA (2004)

[7] Uren V., Cimiano P.,Iria J., Handschuh S., Vargas-Vera M.,
Motta E.,Ciravegna F.: Semantic annotation for knowledge
management: Requirements and a survey of the state of the
art. Journal of Web Semantics, 4(1) (2005) 14–28

[8] Michal Laclavik, Martin Seleng, Marek Ciglan, Ladislav
Hluchy: Ontea: Platform for Pattern based Automated
Semantic Annotation; In Computing and Informatics, Vol. 28,
2009, 555–5

[9] Dill S., Eiron N., et al.: A Case for Automated Large-Scale
Semantic Annotation; Journal of Web Semantics (2003)

[10] Etzioni O., Cafarella M., Downey D., Kok S., Popescu A.,
Shaked T., Soderland S., Weld D., Yates A.: Web-scale
information extraction in knowitall: (preliminary results); In
WWW '04: Proceedings of the 13th international conference
on World Wide Web, 2004, 100-110,
http://doi.acm.org/10.1145/988672.988687

