Introduction

Our Proposal Experimental Design

Results Summary

Proximity estimation and hardness of short-text corpora

Marcelo Luis Errecalde¹ Diego Ingaramo¹ Paolo Rosso²

¹Universidad Nacional de San Luis, Argentina ²Universidad Politécnica de Valencia, España

5th Int. Workshop on Text-based Information Retrieval, 2008

Introduction	

Our Proposal Experimental Design

Results Summary

Outline

Introduction

- Context of our work
- Motivations of our work

2 Clustering process: an overview

- Main components of the process
- Clustering validation
- Our Proposal
 - Main ideas behind our approach
 - The Contiguity error
- Experimental Design
 - Data Sets
 - Proximity estimation
 - Hardness estimation

Introduction ●○○○	Clustering process: an overview	Our Proposal	Experimental Design	Results	Summary
Context of our wo	rk				
What is the problem we are working on?					

Main goal: to develop effective algorithms for the problem of clustering short-text corpora.

What is the problem we are working on?						
Context of our wor	k					
Introduction ●○○○	Clustering process: an overview	Our Proposal	Experimental Design	Results	Summary	

- Main goal: to develop effective algorithms for the problem of clustering short-text corpora.
- These algorithms assign documents to unknown categories in an unsupervised way.

What is the problem we are working on?						
Context of our wor	k					
Introduction ●○○○	Clustering process: an overview	Our Proposal	Experimental Design	Results	Summary	

- Main goal: to develop effective algorithms for the problem of clustering short-text corpora.
- These algorithms assign documents to unknown categories in an unsupervised way.

- Our interest is on clustering of:
 - short-texts (in general)
 - narrow domain short-texts (in particular)

Introduction 0000	Clustering process: an overview	Our Proposal	Experimental Design	Results	Summary
Context of our wor	ĸ				
Why is it	important?				

- Applicability in different areas of text processing:
 - text mining
 - summarization
 - information retrieval

• ...

- Tendencies of people to use 'small-languages':
 - blogs
 - text-messages
 - snippets

• ...

Introduction	Clustering	proces
0000		

Results Summary

Context of our work

Why is this problem difficult?

General problems of text clustering:

an overview

- Synonymy.
- Polysemy.
- Additional difficulties due to:
 - Low frequencies of the document terms.
 - High overlapping degree of their vocabularies.

These aspects can negatively affect the estimation of how similar the documents are and (in consequence) the whole clustering process

Introduction	Clustering process	: an overview
0000		

Motivations of our work

What questions are we trying to answer in our work?

- it is usually assumed that short text corpora are harder to deal with than traditional corpora, but how harder?
- how accurate traditional similarity measures in these cases are?
- to what extent are both issues related?

Clustering process: an overview

Our Proposal Experimental Design

lesults Summ

Main components of the process

Clustering process: an overview

Our Proposal Experimental Design

Results Summ

Main components of the process

Clustering process: an overview

Our Proposal Experimental Design

Results Summa

Clustering validation

Clustering process: an overview

Our Proposal Experimental Design

Results Summary

Clustering validation

Clustering process: an overview

Our Proposal Experimental Design

Results Summary

Clustering validation

Clustering process: an overview

Dur Proposal Experimental Design

Results Summary

Clustering validation

Introduction	Clustering process:	overview

Results Summary

Main ideas behind our approach

First: identify in this process two main components...

Introduction	Clustering process:	an	overview

Results Summary

Main ideas behind our approach

the proximity estimation...

Intr	odu	cti	on
00	00		

Our Proposal Experimental Design

Results Summary

Main ideas behind our approach

the clustering algorithm itself ...

Introduction	Clustering process: an overview

Results Summary

Main ideas behind our approach

Second: concentrate our attention on the proximity estimation

Introduction	Clustering process:	overview

Results Summary

Main ideas behind our approach

Third: to use validity measures on the "true" categorization

Results Summary

Main ideas behind our approach

Underlying reasons of this approach

- internal validity measures are usually based on the similarity measure.
- If these measures are not able to detect any interesting structural property when applied to the "true categorization", this fact can be considered enough evidence that the similarity measure is not adequately expressing the semantic proximity between documents.

Introduction	Clustering	process:	overv

Results Sumn

Main ideas behind our approach

Fourth: a new external validity measure

ew

Introduction	Clustering	process:	overviev

Results Summary

Main ideas behind our approach

Fourth: a new external validity measure, the contiguity error

Introduction	Clustering	process:	

Results Summary

Main ideas behind our approach

... based on the similarity estimation

Introduction	Clustering process: an overview	Our Proposal	Experimental Design	Results	Summary
The Contiguity	error				
The con	tiguity error				
Que	stion: how many cont	iguity errors	a similarity me	asure	

produces respect to the clustering specified by the expert?.

Introduction	Clustering process: an overview	Our Proposal	Experimental Design	Results	Summary
The Contiguity	error				
The con	tiguity error				
Que	stion: how many cont	iguity errors	a similarity me	asure	

produces respect to the clustering specified by the expert?.

Introduction	Clustering process: an overview	Our Proposal ○○○○○○○○●	Experimental Design	Results	Summary
The Contiguity	error				
The con	tiguity error				

according to *sim*, d_x has a document d_y as its nearest neighbour, ...

Introduction	Clustering process: an overview	Our Proposal	Experimental Design ●o∞ooooooooo	Results	Summary
The Contiguity e	error				
The con	tiguity error				

according to *sim*, d_x has a document d_y as its nearest neighbour, but they were categorized in different clusters!!!

Introduction	Clustering process: an overview	Our
		000

Results

Summary

The Contiguity error

The contiguity error

Intuitive idea

The contiguity error (CE) of a similarity measure with respect to a collection, is the total number of contiguity errors that this measure commits on all the documents in the collection.

Introduction	Clustering	process:	ove

Results

The Contiguity error

Summary of our approach...

Data Set	S				
Data Sets					
Introduction	Clustering process: an overview	Our Proposal	Experimental Design	Results	Summary

Introdu	uction
0000	

Our Proposal Experimental Design

Results Summary

Data Sets

Criteria for selecting the corpora

- Data sets with different complexity level according to:
 - Length of documents: short (high) vs. long (low)
 - How related the topics corresponding to the different groups are: very related (high) vs. little related(low)
- Small collections with the same number of documents and number of groups

Introdu	ictio	on
0000		

Our Proposal Experimental Design

Results Sum

Data Sets

Difficulty of the Corpora

Corpus	
Corpus	Terms \times text
Micro4News	2616.95
EasyAbstracts	192.93
CICling-2002	70.45

Introdu	uctic	

Our Proposal Experimental Design

Results Summary

Data Sets

Difficulty of the Corpora

Corpus	
Corpus	Terms $ imes$ text
Micro4News	2616.95
EasyAbstracts	192.93
CICling-2002	70.45

CICling-2002

- short documents
- 2 related topics
- igh complexity

Introdu	uctic	

Our Proposal Experimental Design

Results Summary

Data Sets

Difficulty of the Corpora

Corpus	
Corpus	Terms \times text
Micro4News	2616.95
EasyAbstracts	192.93
CICling-2002	70.45

EasyAbstracts

- short documents
- 2 topics well differentiated
- Image: Image:

Introdu	uctic	

Our Proposal Experimental Design

Results Summary

Data Sets

Difficulty of the Corpora

Corpus	
Corpus	Terms \times text
Micro4News	2616.95
EasyAbstracts	192.93
CICling-2002	70.45

Micro4News

- Iong documents
- 2 topics well differentiated
- Iow complexity

Introdu	uction
0000	

Results Summary

Proximity estimation

Document Representation and similarity estimation

Introduction	Clustering	process:	over

Proximity estimation

Document Representation and similarity estimation

view

Some popular alternatives for representing the documents:

- The Vector Space Model with a family of codification schemes.
- The set model.
- BM-25
- LSI

... and for estimating their similarity:

- Cosine similarity.
- Euclidian distance.
- Jaccard coefficient.

Introdu	ictic	
0000		

Our Proposal Experimental Design

Results Summary

Proximity estimation

Document Representation

SMART codifications

$$w_t = TF'_{d,t} \cdot IDF'_t \cdot NORM$$

Introduction	
0000	

Our Proposal Experimental Design

Results Sumn

Hardness estimation

Hardness estimation

Introd	uctio	
0000		

Our Proposal Experimental Design

Results Summary

Hardness estimation

Which internal validity measure should we use?

Different internal validity measures attempt to identify specific structural properties of the clusterings like cohesion, separation, density or some combination of these properties.

Hardness estimation

Which internal validity measure should we use?

Different internal validity measures attempt to identify specific structural properties of the clusterings like cohesion, separation, density or some combination of these properties.

- the Dunn Index Family
- the Davies-Bouldin Index
- the Silhouette Coefficient
- the Λ-Measure
- the Expected Density Measure

We address this problem avoiding establish a commitment with a particular validity measure and considering a representative group of measures instead.

Introdu	ction
0000	

Our Proposal Experimental Design

Results Sur

Summary

The Micro4News Corpus

Values of validity measures

Cod.	CE	EDM	DB	Dunn	GS
atc	0	0.9	1.64	0.76	0.46
btc	0	0.9	1.64	0.76	0.46
mtc	0	1.07	1.33	0.76	0.73
ntc	0	1.07	1.34	0.74	0.73
Jac	0	0.78	2.10	0.50	0.2
anc	1	0.77	2.48	0.85	0.16
ltc	1	0.92	1.59	0.77	0.50
bnc	1	0.77	2.45	0.85	0.17
Inc	1	0.78	2.52	0.87	0.14
mnc	10	0.82	2.89	0.75	0.02
nnc	10	0.82	3.38	0.74	0.02

Introd	uction
0000	

Our Proposal Experimental Design

Results Summary

The EasyAbstracts Corpus

Values of validity measures

Cod.	CE	EDM	DB	Dunn	GS
mtc	4	0.93	1.57	0.71	0.47
ntc	4	0.93	1.57	0.71	0.47
ltc	5	0.89	1.7	0.71	0.33
atc	5	0.88	1.72	0.71	0.31
btc	6	0.88	1.74	0.71	0.28
Inc	11	0.73	3.57	0.86	0.07
anc	11	0.72	3.49	0.85	0.07
Jac	13	0.74	2.15	0.5	0.08
bnc	15	0.72	3.28	0.82	0.07
mnc	20	0.75	4.91	0.87	0.02
nnc	20	0.75	4.91	0.87	0.02

Introduction
0000

Our Proposal Experimental Design

Results Sur

Summary

The CICling-2002 Corpus

Values of validity measures

Cod.	CE	EDM	DB	Dunn	GS
mnc	16	0.8	2.21	0.79	0.15
nnc	16	0.8	2.21	0.79	0.15
btc	18	0.84	1.82	0.74	0.07
anc	21	0.76	2.45	0.8	0.07
Jac	22	0.79	2.28	0.53	0.05
atc	22	0.85	1.8	0.74	0.1
bnc	22	0.75	2.51	0.8	0.04
ltc	23	0.85	1.8	0.74	0.1
Inc	23	0.76	2.45	0.8	0.08
mtc	23	0.87	1.76	0.74	0.15
ntc	23	0.87	1.76	0.74	0.15

Introduction	Clustering process: an overview	Our Proposal	Experimental Design	Results	Summary
Conclusi	ons				

- our approach can be an interesting tool for determining the hardness of corpora used as testbed in clustering of short-text corpora.
- traditional methods for computing similarity measures can be used with short-text corpora with well differentiated topics but more elaborated approaches are required for obtain acceptable results with narrow domain short-text corpora.
- Silhouette Global, Expected Density Measure and Contiguity Error exhibit an interesting consistency level in all the collections considered and seem to be the most informative for determining the most adequate similarity scheme for each corpus

Introduction	Clustering process: an overview	Our Proposal	Experimental Design	Results

Future work

- To extend our work to other corpora
- To use other more elaborated document representation approaches.

Summary

- To investigate how robust the different clustering algorithms are to the different error levels exhibited by the similarity measures.
- To use semi-supervised clustering approaches that automatically adapt the similarity estimation
- To use the best internal validity measures as objective functions to be optimized.

Introduction	Clustering process: an overview	Our Proposal	Experimental Design

Summary

Questions?

Introduction	Clustering process: an overview	Our Proposal
		00000000

oposal Experimental Design

Results S

Summary

Questions?

Thank You very much for your attention...

Introd	uction
0000	

Our Proposal Experimental Design

Results S

Summary

Micro4News Description

101	\mathbf{n}	\mathbf{n}		Im	on	te
	 				CII	

docs
11
15
11
11

- Long documents
- 2 Topics Well differentiated
- Low complexity

Main Characteristics			
Feature	Value		
Corpus size	722492		
# categories	4		
# tot. docs	48		
# tot. terms	125614		
Voc. size	12785		
Term per doc.	2616,95		
Overl. voc.	0,16		

Introducti	0	

Our Proposal Experimental Design

Results

Summary

EasyAbstracts Description

Distribution of documents			
Category # docs			
Heuristics in Optimization	11		
Machine Learning	15		
Automated Reasoning	11		
Aut. Intelligent Agents	11		

- Short documents
- 2 Topics Well differentiated
- Medium complexity

Main Characteristics			
Feature	Value		
Corpus size	63018		
# categories	4		
# tot. docs	48		
# tot. terms	9261		
Voc. size	2169		
Term per doc.	192,93		
Overl. voc.	0,13		

Introd	uction
0000	

Our Proposal Experimental Design

Results

Summary

CICling-2002 Description

Distribution	of documents
--------------	--------------

Category	# docs
Linguistics	11
Ambiguity	15
Lexicon	11
Text Processing	11

- Short documents
- 2 Related topics
- High complexity

Main Characteristics			
Feature	Value		
Corpus size	23971		
# categories	4		
# tot. docs	48		
# tot. terms	3382		
Voc. size	953		
Term per doc.	70.45		
Overl. voc.	0,22		

Introduction
0000

Our Proposal Experimental Design

Results Summary

Difficulty of the Corpora

Corpus					
Corpus	Terms × text	Vocab. overlapping			
Micro4News	2616.95	0.16			
EasyAbstracts	192.93	0.13			
CICling-2002	70.45	0.22			

Introdu	cti	
0000		

Our Proposal Experimental Design

Results Su

Summary

What is Document Clustering?

 Finding groups of documents such that the documents in a group will be similar (or related) to one another and different from (or unrelated to) the documents in other groups

Introduction

Our Proposal Experimental Design

Results Summary

An informative validity measure: Silhouette Coefficient

Combine ideas of both cohesion and separation, but for individual points, as well as clusters and clusterings

Can calculate the Silhouette width for a cluster or a clustering

Good Clustering		
	Silhouette Graphie Secon man	
- Constanting		
mymm		
1 mm		

