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Document Data and Language Learning

Electronic Documents embody massive information about
language in use

This makes automatic extaction interesting for
acquiring/adapting large scale components of lexical
knowledge bases
Data sparseness is amplified by language variability
Uncertainty is amplified by language ambiguity
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Lexical Learning and Vector Spaces

Semantic Information is needed in several lexical tasks
(e.g. Question Answering)
Vectors are usually representing words, word senses,
patterns, or even predicates (such as in Framenet)
Weights characterize topical, syntagmatic or paradigmatic
features

Challanges
Representation: which features are best suited for the
target linguistic elements
Induction: which similarity function is to be modeled in
the different spaces
Inference: which operators define suitable compositional
deductions
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Local and global infomation in DR methods

Dimensionality Reduction methods explore the data distribution properties
for minimizing the number of features needed for reaching good levels of
accuracy.

Work in ML explores the impact of DR methods based on function
metrics evoked by the data distribution themselves

Linear Discriminant Analysis
Spectral Clustering
LPP

This helps in minimizing the impact of data sparseness, improving
complexity as well as keeping accuracy at reasonable levels

These formulations give rise to valid kernels highly interesting for
CoNLL
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Local and global infomation in DR methods

Objectives
To compare and validate data-driven metrics on realistic
tasks
To validate the linguistic information provided by the
corresponding spaces
To determine kernels relevant for CoNLL research
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Semantic spaces

Semantic Spaces: a definition
A Semantic Space for a set of N targets is 4-tuple < B,A,S,V > where

B is the set of basic features (e.g. words co-occurring with the targets)

A is a lexical association function that weights the correlations
between b ∈ B and the targets

S is a similarity function between targets (i.e. in ℜ|B|×ℜ|B|)

V is a linear transformation over the original N×|B| matrix

Examples

In IR systems, targets are documents, B is the term vocabulary, A is the
tf · idf score. The S function is usually the cosine similarity, i.e.
sim(~t1,~t2) = ∑i t1i·t2i

||~t1||·||~t2||

In Latent Semantic Analysis (Berry et al. 94) targets can be documents or
words, and the transformation V is SVD
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Latent Semantic Spaces

LSA and Lexical semantics
In LSA approaches, SVD is applied to source co-occurrence matrices in
order to

Reduce the original dimensionality

Capture topical similarity latent in the original documents, i.e. second
order relations among targets (words)
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LSA: semantic interpretation

LSA and PCA

SVD let the principal components of the distribution emerge (max
covariance)

Principal components are linear combinations of the original
dimensions, i.e. pseudo concepts, as captured in the entire space
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LPP as a data-driven metrics

General Idea
Determine the best linear transformation A that preserves the local
properties of the space, without making global assumptions (as in
LSA)

An adjecency graph G is adopted, based on internal metrics (i.e. the
space inner product) or external ones (e.g. dictionaries)

Formally:

arg mina ∑ij(aTxi−aTxj)2Wij

Dii = ∑j Wij and L = D−W (Laplacian matrix)

Solve the eingenvector problem: XLXTa = λXDXTa

Final projection into ℜk: (Y)k×k = ATX
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The Adjacency Graph, G

Given two vectors xi and xj, G defines weights wij, as:

cosine graph: wij = max{0,
cos(xi,xj)−τ

|cos(xi,xj)−τ| · cos(xi,xj)}.

ε-neighborhoods graph (gaussian kernel):

wij = max{0,
ε−||xi−xj||2
|ε−||xi−xj||2|

· e−
||xi−xj||2

t },

the topic graph:
wij = δ (i, j) · cos(xi,xj)

where δ (i, j) = 1 only if a corpus category C can be found
such that xi ∈ C and xj ∈ C and 0 otherwise.
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Open Issues

Applicability of DR metrics to complex tasks

Which applications and scenarios?

Which training conditions?

Which parameters (dimensionality, locality principles, ...)

Objectives

Explore all these issues ...

on a large scale

Evaluate different types of embeddings
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Experimental Set-Up

Corpora and Tasks

Reuters-21578 and 20NewsGroup

Task: Document Clustering

Models: VSM, LSA, LPP, LSA+LPP

Data sets
Collection Docs Tok Topics
Reuters 21578 19,675 18,349 30
20NewsGroups 18,828 21,500 20
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Clustering Algorithm

k-means
Hard clustering algorithms fed with a fixed number of randomly
chosen seeds (centroids)

sensitive to the choice of k, and the seeding

Adaptive variant ((Heyer et al., 1999))

Agggregative clustering simiar to k-means with thresholds to increase
flexibility

Minimal infracluster similarity (activate new seeds)

Maximal intra-cluster dissimilarity (activate merge)

Maximal number of cluster members (activate splits)
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Different settings
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An overall view
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Evaluation Metrics

NMI
Normalized mutual information, defined as follows:

NMI(T,C) =
∑t∈T,c∈C p(t,c)log2

p(t,c)
p(t)·p(c)

min(H(T),H(C))
(1)

Accuracy
The accuracy AC is given by:

AC =
∑

n
i=1 δ (Ai,Oi)

N
(2)

where N is the total number of documents and δ (Ai,Oi) is 1
only if Ai = Oi and 0 otherwise
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Results

Topic Graph

REUTERS
METHOD ACC NMI

LSA 0.82 0.79
LPP 0.94 0.99

Table: Best LSA vs. upper bound LPP results based on the "topic"
graph on Reuters.
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Results

Dimensionality reduction effect: LSA vs. LPP
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Results

Clustering effect: LSA vs. LPP
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Results

LSA vs. LSA+LPP (Reuters)

LSA (700)
THR ACC NMI CLUSTERS

-1 0.72 0.61 30
0.2 0.82 0.79 507
0.4 0.86 0.84 1298

LSA+LPP
(LSA 700, LPP 680, ε=0.05)

THR ACC NMI CLUSTERS

-1 0.77 0.66 30
0.2 0.81 0.78 491
0.4 0.86 0.84 1253

Table: Performances on Reuters
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Results

LSA vs. LSA+LPP (20Newsgroup)

LSA (500)
THR ACC NMI CLUSTERS

-1 0.58 0.57 20
0.2 0.59 0.59 430
0.3 0.63 0.64 720

LSA+LPP
(LSA 500, LPP 480, ε=0.05)

THR ACC NMI CLUSTERS

-1 0.54 0.55 20
0.2 0.59 0.60 438
0.3 0.62 0.64 724

Table: Performances on 20Newsgroups



Outline Motivations LPP Exp. Results Conclusions

Conclusions

This study shows that LSA and LPP improves the
clustering accuracy even when much smaller number of
features are employed

LPP alone is not competitive with LSA
LPP can be succesfully combined with LSA

An interesting aspect explored here is the adoption of a
priori knowledge in the design of the targeted locality
principle
The topic graph seems to provide the ideal space for
clustering
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Conclusions

Future Work
Experiments LPP and LSA on other tasks, such as
document classification and lexical disambiguation

The definition of suitable adjacency graphs in LPP is an
interesting research line, as several lexical learning tasks
can be biased by existing lexical knowldge bases
Current work in modeling Framenet is on going
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Results

Linear kernels for Text Classification (Reuters)
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Results

Text Classification: Learning Rates
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