Semantically rich spaces for document clustering

Roberto Basili Paolo Marocco Daniele Milizia

DISP University of Rome Tor Vergata, Rome, Italy {basili,marocco,milizia}@info.uniroma2.it

Text-based IR Workshop

DEXA 2008, Torino, September 1st 2008

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □

Outline	Motivations	LPP	Exp. Results	Conclusions
Outling				
Outline				

Outline	Motivations	LPP	Exp. Results	Conclusions
0 1				
Outline	2			

Outline	Motivations	LPP	Exp. Results	Conclusions
Outling				
Outline				

Empirical Investigation

Outline	Motivations	LPP	Exp. Results	Conclusions
0 1				
Outline	2			

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Document Data and Language Learning

• Electronic Documents embody massive information about language **in use**

Document Data and Language Learning

- Electronic Documents embody massive information about language **in use**
- This makes automatic extaction interesting for acquiring/adapting large scale components of lexical knowledge bases

Document Data and Language Learning

- Electronic Documents embody massive information about language **in use**
- This makes automatic extaction interesting for acquiring/adapting large scale components of lexical knowledge bases
- Data sparseness is amplified by language variability

Document Data and Language Learning

- Electronic Documents embody massive information about language **in use**
- This makes automatic extaction interesting for acquiring/adapting large scale components of lexical knowledge bases
- Data sparseness is amplified by language variability
- Uncertainty is amplified by language ambiguity

Outline Motivations

Exp. Results

Conclusions

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lexical Learning and Vector Spaces

- Semantic Information is needed in several lexical tasks (e.g. Question Answering)
- Vectors are usually representing words, word senses, patterns, or even predicates (such as in Framenet)
- Weights characterize topical, syntagmatic or paradigmatic features

Outline Motivations

LPP

Exp. Results

Conclusions

Lexical Learning and Vector Spaces

- Semantic Information is needed in several lexical tasks (e.g. Question Answering)
- Vectors are usually representing words, word senses, patterns, or even predicates (such as in Framenet)
- Weights characterize topical, syntagmatic or paradigmatic features

Challanges

• Representation: which features are best suited for the target linguistic elements

Outline Motivations

LPP

Exp. Results

Conclusions

Lexical Learning and Vector Spaces

- Semantic Information is needed in several lexical tasks (e.g. Question Answering)
- Vectors are usually representing words, word senses, patterns, or even predicates (such as in Framenet)
- Weights characterize topical, syntagmatic or paradigmatic features

Challanges

- Representation: which features are best suited for the target linguistic elements
- Induction: which *similarity* function is to be modeled in the different spaces
- Inference: which operators define suitable *compositional deductions*

- ロト・ 日本・ モー・ モー・ うらく

Local and global infomation in DR methods

Dimensionality Reduction methods explore the data distribution properties for minimizing the number of features needed for reaching good levels of accuracy.

• Work in ML explores the impact of DR methods based on function metrics evoked by the data distribution themselves

Local and global infomation in DR methods

Dimensionality Reduction methods explore the data distribution properties for minimizing the number of features needed for reaching good levels of accuracy.

- Work in ML explores the impact of DR methods based on function metrics evoked by the data distribution themselves
 - Linear Discriminant Analysis
 - Spectral Clustering
 - LPP
- This helps in minimizing the impact of data sparseness, improving complexity as well as keeping accuracy at reasonable levels

Local and global infomation in DR methods

Dimensionality Reduction methods explore the data distribution properties for minimizing the number of features needed for reaching good levels of accuracy.

- Work in ML explores the impact of DR methods based on function metrics evoked by the data distribution themselves
 - Linear Discriminant Analysis
 - Spectral Clustering
 - LPP
- This helps in minimizing the impact of data sparseness, improving complexity as well as keeping accuracy at reasonable levels
- These formulations give rise to valid kernels highly interesting for CoNLL

Local and global infomation in DR methods

Objectives

- To compare and validate data-driven metrics on realistic tasks
- To validate the linguistic information provided by the corresponding spaces
- To determine kernels relevant for CoNLL research

Outline	Motivations	LPP	Exp. Results	Conclusions
C				

Semantic Spaces: a definition

A Semantic Space for a set of N targets is 4-tuple $\langle B, A, S, V \rangle$ where

• *B* is the set of basic features (e.g. words co-occurring with the targets)

▲□▶▲□▶▲□▶▲□▶ □ のQで

Semantic Spaces: a definition

A Semantic Space for a set of N targets is 4-tuple $\langle B, A, S, V \rangle$ where

• *B* is the set of basic features (e.g. words co-occurring with the targets)

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

• *A* is a lexical association function that weights the correlations between *b* ∈ *B* and the targets

Semantic Spaces: a definition

A Semantic Space for a set of N targets is 4-tuple $\langle B, A, S, V \rangle$ where

• *B* is the set of basic features (e.g. words co-occurring with the targets)

▲□▶▲□▶▲□▶▲□▶ □ のQで

- *A* is a lexical association function that weights the correlations between *b* ∈ *B* and the targets
- *S* is a similarity function between targets (i.e. in $\mathfrak{R}^{|B|} \times \mathfrak{R}^{|B|}$)

Semantic Spaces: a definition

A Semantic Space for a set of N targets is 4-tuple $\langle B, A, S, V \rangle$ where

• *B* is the set of basic features (e.g. words co-occurring with the targets)

- *A* is a lexical association function that weights the correlations between *b* ∈ *B* and the targets
- *S* is a similarity function between targets (i.e. in $\mathfrak{R}^{|B|} \times \mathfrak{R}^{|B|}$)
- V is a linear transformation over the original $N \times |B|$ matrix

Semantic Spaces: a definition

A Semantic Space for a set of N targets is 4-tuple $\langle B, A, S, V \rangle$ where

- *B* is the set of basic features (e.g. words co-occurring with the targets)
- *A* is a lexical association function that weights the correlations between *b* ∈ *B* and the targets
- *S* is a similarity function between targets (i.e. in $\mathfrak{R}^{|B|} \times \mathfrak{R}^{|B|}$)
- V is a linear transformation over the original $N \times |B|$ matrix

Examples

• In IR systems, targets are documents, *B* is the term vocabulary, *A* is the *tf* · *idf* score. The *S* function is usually the cosine similarity, i.e. $sim(\vec{t_1}, \vec{t_2}) = \frac{\sum_i t_{1i} \cdot t_{2i}}{||\vec{t_1}|| \cdot ||\vec{t_2}||}$

Semantic Spaces: a definition

A Semantic Space for a set of N targets is 4-tuple $\langle B, A, S, V \rangle$ where

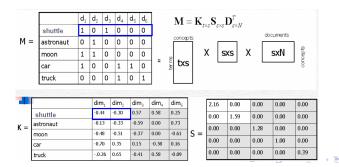
- *B* is the set of basic features (e.g. words co-occurring with the targets)
- *A* is a lexical association function that weights the correlations between *b* ∈ *B* and the targets
- S is a similarity function between targets (i.e. in $\mathfrak{R}^{|B|} \times \mathfrak{R}^{|B|}$)
- V is a linear transformation over the original $N \times |B|$ matrix

Examples

- In IR systems, targets are documents, *B* is the term vocabulary, *A* is the *tf* · *idf* score. The *S* function is usually the cosine similarity, i.e. $sim(\vec{t_1}, \vec{t_2}) = \frac{\sum_i t_{1i} \cdot t_{2i}}{||\vec{t_1}|| \cdot ||\vec{t_2}||}$
- In Latent Semantic Analysis (Berry et al. 94) targets can be documents or words, and the transformation V is SVD

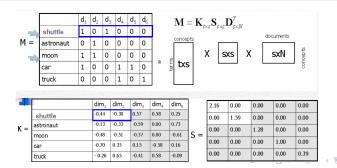
LSA and Lexical semantics

- Reduce the original dimensionality
- Capture *topical similarity* latent in the original documents, i.e. second order relations among targets (words)



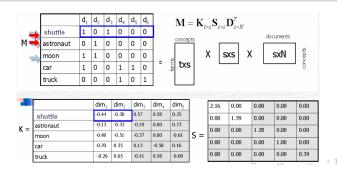
LSA and Lexical semantics

- Reduce the original dimensionality
- Capture *topical similarity* latent in the original documents, i.e. second order relations among targets (words)



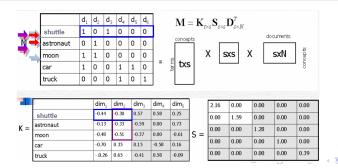
LSA and Lexical semantics

- Reduce the original dimensionality
- Capture *topical similarity* latent in the original documents, i.e. second order relations among targets (words)



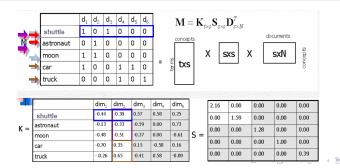
LSA and Lexical semantics

- Reduce the original dimensionality
- Capture *topical similarity* latent in the original documents, i.e. second order relations among targets (words)



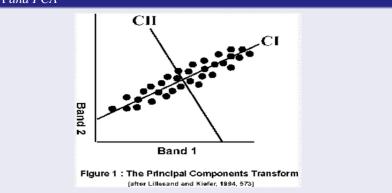
LSA and Lexical semantics

- Reduce the original dimensionality
- Capture *topical similarity* latent in the original documents, i.e. second order relations among targets (words)



LSA: semantic interpretation

LSA and PCA



- SVD let the principal components of the distribution emerge (max covariance)
- Principal components are linear combinations of the original dimensions, i.e. pseudo concepts, as captured in the <u>entire</u> space

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

LPP as a data-driven metrics

General Idea

- Determine the *best* linear transformation **A** that preserves the *local* properties of the space, without making global assumptions (as in LSA)
- An adjecency graph **G** is adopted, based on internal metrics (i.e. the space inner product) or external ones (e.g. dictionaries)

LPP as a data-driven metrics

General Idea

- Determine the *best* linear transformation **A** that preserves the *local* properties of the space, without making global assumptions (as in LSA)
- An adjecency graph **G** is adopted, based on internal metrics (i.e. the space inner product) or external ones (e.g. dictionaries)

• arg min_{**a**}
$$\sum_{ij} (\mathbf{a}^T x_i - \mathbf{a}^T x_j)^2 W_{ij}$$

ヘロト 人間ト 人造ト 人造ト

LPP as a data-driven metrics

General Idea

- Determine the *best* linear transformation **A** that preserves the *local* properties of the space, without making global assumptions (as in LSA)
- An adjecency graph **G** is adopted, based on internal metrics (i.e. the space inner product) or external ones (e.g. dictionaries)

- arg min_{**a**} $\sum_{ij} (\mathbf{a}^T x_i \mathbf{a}^T x_j)^2 W_{ij}$
- $D_{ii} = \sum_j W_{ij}$ and L = D W (Laplacian matrix)

LPP as a data-driven metrics

General Idea

- Determine the *best* linear transformation **A** that preserves the *local* properties of the space, without making global assumptions (as in LSA)
- An adjecency graph **G** is adopted, based on internal metrics (i.e. the space inner product) or external ones (e.g. dictionaries)

- arg min_{**a**} $\sum_{ij} (\mathbf{a}^T x_i \mathbf{a}^T x_j)^2 W_{ij}$
- $D_{ii} = \sum_j W_{ij}$ and L = D W (Laplacian matrix)
- Solve the eingenvector problem: $XLX^T \mathbf{a} = \lambda XDX^T \mathbf{a}$

LPP as a data-driven metrics

General Idea

- Determine the *best* linear transformation **A** that preserves the *local* properties of the space, without making global assumptions (as in LSA)
- An adjecency graph **G** is adopted, based on internal metrics (i.e. the space inner product) or external ones (e.g. dictionaries)

- arg min_{**a**} $\sum_{ij} (\mathbf{a}^T x_i \mathbf{a}^T x_j)^2 W_{ij}$
- $D_{ii} = \sum_j W_{ij}$ and L = D W (Laplacian matrix)
- Solve the eingenvector problem: $XLX^T \mathbf{a} = \lambda XDX^T \mathbf{a}$
- Final projection into \Re^k : $(Y)_{k \times k} = A^T X$

The Adjacency Graph, **G**

Given two vectors x_i and x_j , **G** defines weights w_{ij} , as:

- cosine graph: $w_{ij} = max\{0, \frac{cos(x_i, x_j) \tau}{|cos(x_i, x_j) \tau|} \cdot cos(x_i, x_j)\}.$
- ε -neighborhoods graph (gaussian kernel): $w_{ij} = max\{0, \frac{\varepsilon - ||x_i - x_j||^2}{|\varepsilon - ||x_i - x_j||^2} \cdot e^{-\frac{||x_i - x_j||^2}{t}}\},$
- the *topic* graph:

$$w_{ij} = \boldsymbol{\delta}(i,j) \cdot cos(x_i,x_j)$$

where $\delta(i,j) = 1$ only if a corpus category *C* can be found such that $x_i \in C$ and $x_j \in C$ and 0 otherwise.

Open Issues

Applicability of DR metrics to complex tasks

- Which applications and scenarios?
- Which training conditions?
- Which parameters (dimensionality, locality principles, ...)

▲□▶▲□▶▲□▶▲□▶ □ のQで

Objectives

- Explore all these issues ...
- on a large scale
- Evaluate different types of embeddings

Experimental Set-Up

Corpora and Tasks

- Reuters-21578 and 20NewsGroup
- Task: Document Clustering
- Models: VSM, LSA, LPP, LSA+LPP

Data sets

Collection	Docs	Tok	Topics
Reuters 21578	19,675	18,349	30
20NewsGroups	18,828	21,500	20

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○のへ⊙

Clustering Algorithm

k-means

- Hard clustering algorithms fed with a fixed number of randomly chosen seeds (centroids)
- sensitive to the choice of k, and the seeding

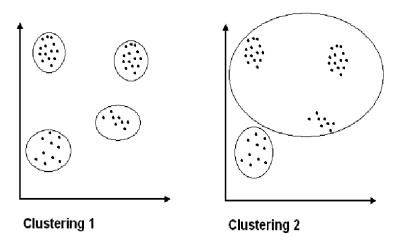
Adaptive variant ((Heyer et al., 1999))

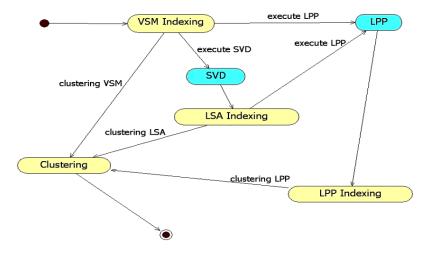
- Agggregative clustering simiar to k-means with thresholds to increase flexibility
- Minimal infracluster similarity (activate new seeds)
- Maximal intra-cluster dissimilarity (activate merge)
- Maximal number of cluster members (activate *splits*)

Exp. Results

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Different settings





◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 の�?

Evaluation Metrics

NMI

Normalized mutual information, defined as follows:

$$NMI(T,C) = \frac{\sum_{t \in T, c \in C} p(t,c) log_2 \frac{p(t,c)}{p(t) \cdot p(c)}}{min(H(T),H(C))} \tag{1}$$

Accuracy

The accuracy AC is given by:

$$AC = \frac{\sum_{i=1}^{n} \delta(A_i, O_i)}{N}$$
(2)

where *N* is the total number of documents and $\delta(A_i, O_i)$ is 1 only if $A_i = O_i$ and 0 otherwise

Outline	Motivations	LPP	Exp. Results	Conclusions
Results				

Topic Graph

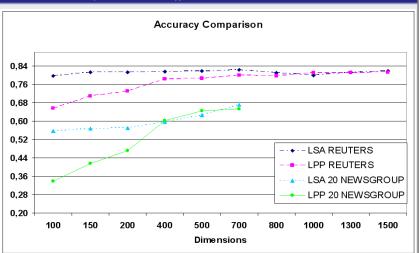
	REUTERS		
Method	ACC	NMI	
LSA	0.82	0.79	
LPP	0.94	0.99	

Table: Best LSA vs. upper bound LPP results based on the "*topic*" graph on Reuters.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Outline	Motivations	LPP	Exp. Results	Conclusions
Results				

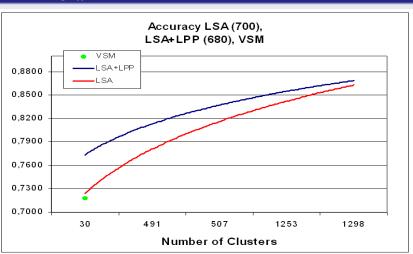
Dimensionality reduction effect: LSA vs. LPP



Outline	Motivations	LPP	Exp. Results	Conclusions
D 14				

Results

Clustering effect: LSA vs. LPP



Outline	Motivations	LPP	Exp. Results	Conclusions
Results				

LSA vs. LSA+LPP (Reuters)

	LSA (700)				
THR	ACC	NMI	CLUSTERS		
-1	0.72	0.61	30		
0.2	0.82	0.79	507		
0.4	0.86	0.84	1298		
	LSA+LPP				
	(LSA	700, LPP	° 680, ε=0.05)		
THR	ACC	NMI	CLUSTERS		
-1	0.77	0.66	30		
0.2	0.81	0.78	491		
0.4	0.86	0.84	1253		

Table: Performances on Reuters

Outline	Motivations	LPP	Exp. Results	Conclusions

Results

LSA vs. LSA+LPP (20Newsgroup)

	LSA (500)				
THR	ACC	NMI	CLUSTERS		
-1	0.58	0.57	20		
0.2	0.59	0.59	430		
0.3	0.63	0.64	720		
	LSA+LPP				
	(LSA	500, LPP	480 , ε=0.05)		
THR	ACC	NMI	CLUSTERS		
-1	0.54	0.55	20		
0.2	0.59	0.60	438		
0.3	0.62	0.64	724		

Table: Performances on 20Newsgroups

• This study shows that LSA and LPP improves the clustering accuracy even when much smaller number of features are employed

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• This study shows that LSA and LPP improves the clustering accuracy even when much smaller number of features are employed

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• LPP alone is not competitive with LSA

• This study shows that LSA and LPP improves the clustering accuracy even when much smaller number of features are employed

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- LPP alone is not competitive with LSA
- LPP can be succesfully combined with LSA

- This study shows that LSA and LPP improves the clustering accuracy even when much smaller number of features are employed
 - LPP alone is not competitive with LSA
 - LPP can be succesfully combined with LSA
- An interesting aspect explored here is the adoption of a priori knowledge in the design of the targeted locality principle
- The *topic graph* seems to provide the ideal space for clustering

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Exp. Resul

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Conclusions

Future Work

• Experiments LPP and LSA on other tasks, such as document classification and lexical disambiguation

Exp. Result

▲□▶▲□▶▲□▶▲□▶ □ のQで

Conclusions

Future Work

- Experiments LPP and LSA on other tasks, such as document classification and lexical disambiguation
- The definition of suitable adjacency graphs in LPP is an interesting research line, as several lexical learning tasks can be biased by existing lexical knowldge bases

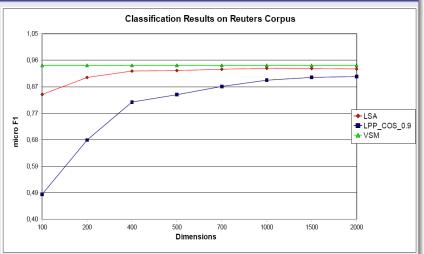
Conclusions

Future Work

- Experiments LPP and LSA on other tasks, such as document classification and lexical disambiguation
- The definition of suitable adjacency graphs in LPP is an interesting research line, as several lexical learning tasks can be biased by existing lexical knowldge bases
- Current work in modeling Framenet is on going

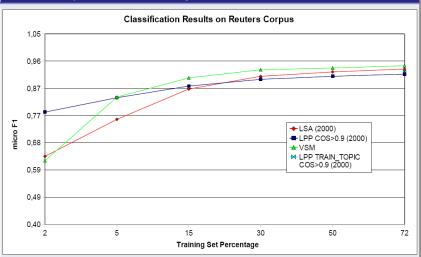
Outline	Motivations	LPP	Exp. Results	Conclusions
Results				

Linear kernels for Text Classification (Reuters)



Outline	Motivations	LPP	Exp. Results	Conclusions
Results				

Text Classification: Learning Rates



Outline	Motivations	LPP	Exp. Results	Conclusions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

31/31 Thanks!