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Motivation

@ Document length effect on the retrieval effectiveness

@ Smoothing and the retrieval performance
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An Outline

@ Models
@ Smoothing methods
@ Experiments

@ Results
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Basic model
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An Odds model

@ As an alternative to the basic prob. model, we propose an

odds-like model

Q
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Some known smoothing methods

@ The Jelinek-Mercer method involves a linear interpolation

Ps,)\(ti |d) = (1 _}‘) ' I:’ML(ti |d) +A- I:’avg (ti ’C)

@ Bayesian parameter estimation with Dirichlet distribution is a
document length -dependent smoothing factor

C(ti;d) +|-1Pavg(ti|c)
Syedarc(ti;d) +H

Psu(tild) =
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Exponential formula

@ Our alternative way of smoothing, combining
Puc(ti|d) and Payg(ti|C) as an estimate of Ps(tj,d)

@ And we estimate Py (ti|d) as a function of P (i|C)

Pse(tild) = Pu(tid)® - Payg(ti|C)" ™
Pu,e(tild) = Pavg(ti|c)Bd
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Retrieval Functions
@ We have combined the models with the exponential smoothing

method
@ The Odds model

B P (ti]d) \ e P
s I, (o) 1, P

@ The Prob model

PML t| |d
- Pavg (1i|C)Pe
IGQIT_!WdT Pavg ti |C g +0g—1 |_IT avg i
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Collection

INEX 2005 IEEE collection , version 1.9
16,819 journal articles in XML format, comprising 764 MB of data

We regarded each XML element as an independent document

21.6 million documents with a collection size of more than 253
million words

@ We have a good test case for investigating the influence of
document length variation on the retrieval quality of language
models.
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Distribution of document length in our test collection
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Experiments

For the retrieval part

@ we considered the CO queries from INEX 2005 along with the
official adhoc assessments
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The effect of considering document length

@ We assume that the probabilities P(d) and P(d) are proportional
to document length

@ For the Odds model, the factor %—% was omitted from the retrieval
formula p, ¢ when document length was ignored.

@ In the case of the Probability model, the functions for p,‘ie and
Pp.e Were compared.
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Models results with and without using dI
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Infl of thing par ters on MAP
when using Prob. model
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Best results for models and smoothing methods
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Best results for models and smoothing methods
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Conclusions and Outlook

@ New language model based on an odds formula
@ New smoothing method called exponential smoothing

@ Our new model along with the new smoothing method give very
good results

@ Document length is an important factor for language models, so
models ignoring this parameter lead to very poor results

Najeeb Abdulmutalib Language Models and Smoothing Methods University of Duisburg-Essen



