Language Models and Smoothing Methods for Collections with Large Variation in Document Length

Najeeb Abdulmutalib, Norbert Fuhr

University of Duisburg-Essen najeeb@uni-due.de

#### TIR-08

5th International Workshop on Text-based Information Retrieval Turin, Italy 1 September 2008



## **Motivation**

- Document length effect on the retrieval effectiveness
- Smoothing and the retrieval performance



# **An Outline**

- Models
- Smoothing methods
- Experiments
- Results



### **Basic model**

$$P(q|d) = \prod_{t_i \in q^T} P(t_i|d)$$
  
= 
$$\prod_{t_i \in q^T \cap d^T} P_s(t_i|d) \prod_{t_i \in q^T - d^T} P_u(t_i|d)$$
  
= 
$$\prod_{t_i \in q^T \cap d^T} \frac{P_s(t_i|d)}{P_u(t_i|d)} \prod_{t_i \in q^T} P_u(t_i|d)$$
(1)

Najeeb Abdulmutalib

Language Models and Smoothing Methods

University of Duisburg-Essen



#### An Odds model

As an alternative to the basic prob. model, we propose an odds-like model

$$\begin{array}{lll} \frac{P(d|q)}{P(\bar{d}|q)} &=& \frac{P(q|d)}{P(q|\bar{d})} \cdot \frac{P(d)}{P(\bar{d})} \\ &\approx& \prod_{t_i \in q^T} \frac{P_i(t_i|d)}{P(t_i|\bar{d})} \frac{P(d)}{P(\bar{d})} \\ &=& \prod_{t_i \in q^T \cap d^T} \frac{P_s(t_i|d)}{P_s(t_i|\bar{d})} \prod_{t_i \in q^T - d^T} \frac{P_u(t_i|d)}{P_u(t_i|\bar{d})} \cdot \frac{P(d)}{P(\bar{d})} \end{array}$$



#### Some known smoothing methods

• The Jelinek-Mercer method involves a linear interpolation

$$P_{s,\lambda}(t_i|d) = (1 - \lambda) \cdot P_{ML}(t_i|d) + \lambda \cdot P_{avg}(t_i|C)$$

 Bayesian parameter estimation with Dirichlet distribution is a document length -dependent smoothing factor

$$P_{\mathbf{s},\mu}(t_i|\mathbf{d}) = \frac{c(t_i;\mathbf{d}) + \mu P_{avg}(t_i|\mathbf{C})}{\sum_{t_i \in \mathbf{d}^T} c(t_i;\mathbf{d}) + \mu}$$



# **Exponential formula**

- Our alternative way of smoothing, combining  $P_{ML}(t_i|d)$  and  $P_{avg}(t_i|C)$  as an estimate of  $P_s(t_i,d)$
- And we estimate  $P_u(t_i|d)$  as a function of  $P_{avg}(t_i|C)$

$$\begin{array}{lcl} \mathsf{P}_{\mathsf{s},\mathsf{e}}(t_i|d) & = & \mathsf{P}_{\mathit{ML}}(t_i|d)^{\alpha_d} \cdot \mathsf{P}_{\mathit{avg}}(t_i|C)^{1-\alpha_d} \\ \mathsf{P}_{\mathit{u},\mathsf{e}}(t_i|d) & = & \mathsf{P}_{\mathit{avg}}(t_i|C)^{\beta_d} \end{array}$$



#### **Retrieval Functions**

- We have combined the models with the exponential smoothing method
- The Odds model

$$\rho_{o,e} = \prod_{t_i \in q^T \cap d^T} \left( \frac{P_{ML}(t_i|d)}{P_{avg}(t_i|C)} \right)^{\omega_d} \quad \cdot \prod_{t_i \in q^T - d^T} P_{avg}(t_i|C)^{\gamma_d} \cdot \frac{P(d)}{P(\bar{d})}$$

The Prob model

$$\rho_{\boldsymbol{p},\boldsymbol{e}} = \prod_{t_i \in q^T \cap d^T} \frac{P_{\boldsymbol{ML}}(t_i|\boldsymbol{d})^{\alpha_d}}{P_{\boldsymbol{a}\boldsymbol{v}\boldsymbol{g}}(t_i|\boldsymbol{C})^{\beta_d + \alpha_d - 1}} \prod_{t_i \in q^T} P_{\boldsymbol{a}\boldsymbol{v}\boldsymbol{g}}(t_i|\boldsymbol{C})^{\beta_d}$$

University of Duisburg-Essen

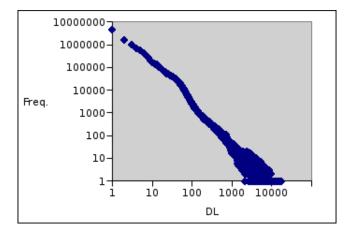


# Collection

- INEX 2005 IEEE collection , version 1.9
- 16,819 journal articles in XML format, comprising 764 MB of data
- We regarded each XML element as an independent document
- 21.6 million documents with a collection size of more than 253 million words
- We have a good test case for investigating the influence of document length variation on the retrieval quality of language models.



#### Distribution of document length in our test collection





# **Experiments**

For the retrieval part

 we considered the CO queries from INEX 2005 along with the official adhoc assessments

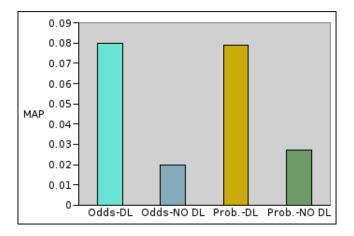


## The effect of considering document length

- We assume that the probabilities P(d) and P(d
  and P(d
   ) are proportional to document length
- For the Odds model, the factor  $\frac{p(d)}{p(d)}$  was omitted from the retrieval formula  $\rho_{o,e}$  when document length was ignored.
- In the case of the Probability model, the functions for  $\rho_{\rho,e}^d$  and  $\rho_{\rho,e}$  were compared.

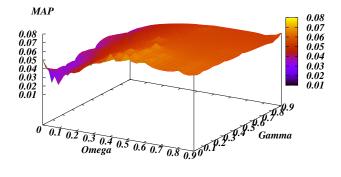


#### Models results with and without using dl



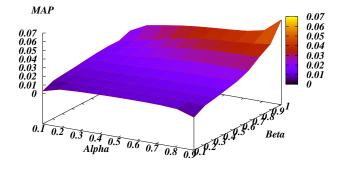


#### Influence of smoothing parameters on MAP when using Odds model





#### Influence of smoothing parameters on MAP when using Prob. model

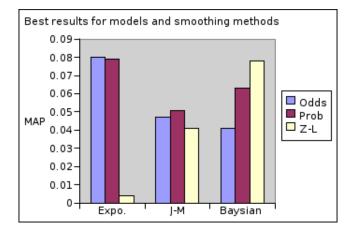


Najeeb Abdulmutalib

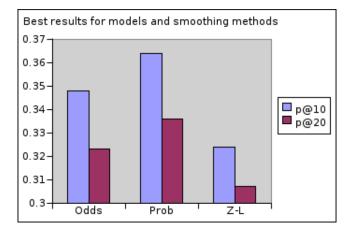
Language Models and Smoothing Methods

University of Duisburg-Essen



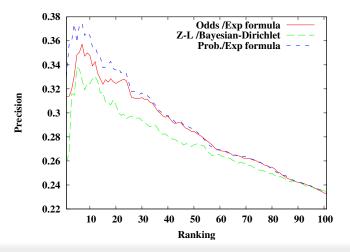








P@k relevant documnts





# **Conclusions and Outlook**

- New language model based on an odds formula
- New smoothing method called exponential smoothing
- Our new model along with the new smoothing method give very good results
- Document length is an important factor for language models, so models ignoring this parameter lead to very poor results