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Abstract—In this paper we introduce a formalization of Logical
Imaging applied to IR in terms of Quantum Theory through the
use of an analogy between states of a quantum system and terms
in text documents. Our formalization relies upon the Schrödinger
Picture, creating an analogy between the dynamics of a physical
system and the kinematics of probabilities generated by Logical
Imaging. By using Quantum Theory, it is possible to model more
precisely contextual information in a seamless and principled
fashion within the Logical Imaging process. While further work
is needed to empirically validate this, the foundations for doing
so are provided.

I. INTRODUCTION

In the last few years there have been several attempts to
model classical systems using Quantum Theory (QT). For
example, QT inspired models have been developed for the
modeling of cognitive processes, such as concept formation
and concepts combination [1], the modeling of semantics [6],
[7], [5], [8] and the modeling of Information Retrieval (IR)
processes and techniques [16], [3], [24]. The appeal of using
QT in the development of such models is because it acts as
a trade d’union between logics, probability and geometries to
provide a unified point of view, while also naturally modeling
the contextual behaviour of complex systems [17].

In this paper, we propose a way of formalizing the Logical
Imaging (LI) technique for IR [12] within a framework based
on QT [24]. By reformulating the LI within a QT framework it
is expected that new instruments for improving the technique
will be possible by taking advantage of the appeal of QT
inspired models. To this aim, we show how LI can be success-
fully mapped into the QT framework, where our formalization
is based on the metaphor of representing terms as states of a
quantum system and documents as mixtures of such states.
The technique for updating probabilities associated with the
states of a system, i.e the Logical Imaging, is then modeled
as a process that evolves the system by collapsing some of
the states into the states that strictly belong to each document.
This update relies upon the Schrödinger Picture, which depicts
the evolution over time of the states of a quantum system. By
placing LI within a QT framework the mathematical basis is
provided to capture, model and use the contextual information
associated with a term in order to understand its meaning in a
specific context. This is unlike the original LI model proposed
by Crestani et al which lacks such contextual precision.

The remainder of this paper is structured as follows: in
section II, we briefly introduce the LI technique, then in
section II-A we show how LI has been adapted to the IR
problem by Crestani et al. In section III, we propose our
formalization of LI in a framework based on QT. This requires
the introduction of the kinematics operator which captures the
dynamic flow of probabilities of transfer triggered by the LI
process (section IV). In section V, we discuss the proposed
formalism, illustrating how the metaphor undertaken in our
approach differs from the one used in some other QT inspired
models. Finally, the paper concludes with section VI where
directions of future works are examined.

II. LOGICAL IMAGING

The Logical Uncertainty Principle (LUP) [22] introduced a
new way of thinking about relevance: in fact, van Rijsbergen
proposed evaluating the probability of relevance of a document
for a given query1, namely P (R|q, d), using the probability
of a conditional, P (d → q) [23]. Such a probability could
be evaluated by a simple conditionalization P (q|d) [15] but
as Lewis showed, such a measure can take on at most only
four different values [18], [19]. To overcome this limitation,
van Rijsbergen suggested evaluating conditionalization by LI,
using possible worlds. Lewis assumed that there are only a
finite number of possible worlds2. Moreover, he considered a
probability distribution over the class of possible worlds: each
world W has a probability P (W ) and these probabilities sum
to 1. For each world W and each proposition y there is a world
Wy that is the most similar world to W where y results true.
Then a probability function, the image of P , can be defined
over y: we denote this as Py . This function is defined by setting
Py(W ) for all worlds W equal to the sum of P (W ′) for all
worlds W ′ such that W ′y is identical to W . This means that the
image of a probability function can be computed by moving
the original probability of each world W ′ to W ′y . Essentially,
LI revises the probability associated with a proposition y by
means of the minimal revision to make y accepted. This notion
of minimal revision, or minimal extension, is in accordance
with what van Rijsbergen proposes in LUP: the truth value

1The reader can refer to [11] for a good survey of Probabilistic Models.
2This assumption is made only for mathematical simplicity and it can be

removed if necessary, as is shown in [14].



of the conditional y → x in a world W is equivalent to the
truth value of the consequent x in the closest world Wy to W
where the antecedent y is true. Thus, the implication y → x
is true at W if and only if x is true at Wy . Let W (y) be a
truth evaluation function which computes the truth value of
a proposition y in the context of a world: W (y) equals 1 if
y is true at W , 0 otherwise. Let Wy(x) be an extension of
the previous function, which evaluates to either one, if the
sentence x is true, or zero if false in world Wy:

Wy(x) =
{

1 if x is true at Wy

0 otherwise

Thus, we can write W (y → x) = Wy(x). We are interested
in the probability of proposition y: this can be computed by
summing the probabilities of the worlds where the proposition
is true; mathematically we have P (y) =

∑
W P (W )W (y).

Successively, we have to derive a new probability distribution,
Py from P , such that the probability associated with every
world W is transferred to its most similar (closest) world Wy

where y is true. This new probability distribution is

Py(W ′) =
∑
W P (W )I(W ′,W )

where I(W ′,W ) assumes value 1 if W ′ = Wy , zero oth-
erwise. In [19] it is illustrated how the probability of the
conditional is the probability of the consequent after Imaging
on the antecedent, P (y → x) = Py(x). In the following
section we present the technique for IR based on LI as
introduced by Crestani et al.

A. Logical Imaging in IR

While LI provides an intuitive and novel approach to
estimate the relevance of a document given a query, there
have only been a few attempts at using LI in IR. And this has
been performed in two ways; viewing documents as possible
worlds [2], [21] or viewing terms as possible worlds3 [10],
[12], [13]. Here we focus on the later, and more empirically
successful approach to LI, where terms are considered as
objects of the Possible World Semantic.

Under this view, the set of possible worlds is represented
by the set of terms T of a collection D of documents. Each
document d of D is represented using terms belonging to T :
then a document can either be true or not true in the context
of a world. Let us assume a probability distribution P on the
set T ; the sum of each probability P (t) associated with the
term t has to sum to 1, such that

∑
t∈T P (t) = 1. Now, in

order to evaluate the probability of conditionalization, namely
P (d → q), we compute LI on d over all possible terms t in
T , such that:

P (d→ q) = Pd(q) =
∑
t∈T P (t)td(q)

where td(q) is the truth function which returns 1 if and only
if q is true at td, 0 otherwise, and td is the closest term
to t for which d is true. This process of LI on d causes
a transfer of probabilities from terms not occurring in the
document d to terms occurring in d. In order to apply LI

3We assume the reader is familiar with this work.

a term–term similarity function is required. Such a function
establishes which of the possible worlds has to be the target of
the movement of probabilities, namely the closest world Wd

to W where d is true. This directs the transfer of probabilities
from terms absent in the document to terms that are present.
The choice of a similarity measure will play a crucial role in
the transfer of probabilities, which will invariably affect the
empirical effectiveness of the LI IR model.

In [10], [12], [13], the similarity function used was the
Expected Mutual Information Measure (EMIM ). However,
this function has some drawbacks: in particular, it only par-
tially accounts for the context of terms. This is because the
EMIM value of a pair of terms is defined over the whole
collection. The measure then does not take into account the
local (i.e. at document level) relationship between two terms,
encoding a measure of the global (i.e. at collection level)
interaction between the terms instead. For example, in a
collection containing, in similar amount, documents related to
sport and to nature, it is likely having similar EMIM values
between the pairs (bat, cricket) and (bat, night): in the first
case the association reveals the sport sense of bat, while in
the second example bat refers to the animal sense. Performing
LI with EMIM does not fully account for the context
surrounding a term. While different similarity functions could
be used, formalizing LI in terms of QT provides new directions
to incorporate more precise localized contextual information
seamlessly, as opposed to the ad hoc incorporation of more
sophisticated functions within the original LI IR model.

III. LI FORMALIZED IN A QT FRAMEWORK

Let us assume a set T of cardinality ‖T‖ = k representing
the terms extracted from the collection D. We represent the
terms in T as normalized vectors of a geometric space of
dimension n: thus, each term ti ∈ T is represented by the
vector |ti〉.4 Let us consider a probability distribution P over

4In this paper, vectors and matrices are written in according to the Dirac
notation, widely used in QT literature: thus a vector x correspond to |x〉
and the matrix y · yT corresponds to

˛̨̨
y
ED

y
˛̨̨
. For an introduction to Dirac

notation, the reader is referred to [20].
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Fig. 1. Graphical interpretation of the probability kinematics induced by
the Imaging process: the probabilities flow from terms outside the document
(grey circles) to terms inside the document (white circles).



the set T : the distribution associates a probability αi ∈ [0, 1]
with each term ti ∈ T , such that

∑k
i=1 αi = 1. Since

each vector |ti〉 corresponds to a term in T , the probability
of the corresponding term is associated with each vector. If
we assume that each term ti, and the vector |ti〉, represents
a possible world wi, then T corresponds to the set of all
possible worlds, denoted by W . Furthermore, P represents
a probability distribution over W .

In order to compute d → q by LI, we need to test the
document d in each possible world. A term is a d–world, if,
and only if, it is present in document d. Thus, we have to
transfer the probability associated with each not d-term to the
closest d-term. At the end of this process, we obtain a set Wd

whose elements are all the worlds (terms) where d is true. Each
element of Wd is associated with a probability distribution that
is given by the movements of probabilities from not d–worlds
to the closest d–worlds. We can now compute the density
operator ρ′d associated with a linear combination of d–worlds,
known as a mixture. Each component of the density operator
is scaled by the probability of the d–world. Formally, ρ′d is
given by

ρ′d =
∑
ti∈Wd

α′i(
∑n
j=1 λi,j

2
∣∣ej〉 〈ej∣∣)

where α′i is the sum of the probability αi with the probabili-
ties of the not d–worlds that move to the world wi represented
by the term ti. In the above equation, λi,j is the jth component
of the normalized vector |ti〉 5 and

∣∣ej〉 represents the j-th
vector of the canonical basis.

We can calculate the projector which represents the sub-
space spanned by a document d by Pd =

⋃
ti∈d

∣∣ti〉 〈ti∣∣:
similarly, the projector associated with a query q is given
by Pq =

⋃
ti∈q

∣∣ti〉 〈ti∣∣. Thus, the probability P (d → q)
calculated by LI in the proposed QT framework is given by
the probability of the subspace JPd → PqK calculated by
the trace operation tr(ρ′dPR), where PR

6 is the projector
associated with JPd → PqK. One may argue that ρ′d is not
a density operator but just a positive self–adjoint (Hermitian)
operator whose trace is equal to one: the interested reader can
refer to appendix B for the demonstration that ρ′d respects the
definition of density operator.

IV. THE KINEMATIC OPERATOR

Given the proposed QT interpretation of LI, it is possible
to define a linear transformation of the matrix of probabilities
ρd in order to generate the movement of probabilities from
one not d–world to its closest d–world. This transformation
is referred to as kinematics operator denoted by K and is
analogous to the approach taken by Schödinger in order to
address the evolution of a quantum system.

In the previous section, we computed the matrix of probabil-
ities after the LI process by simply calculating ρ′d as a linear
combination of new probabilities α′i multiplied by the relative
projectors Pi. In the following, we show how the LI process

5Since it is a unit vector, we can be sure that the square of its components
sums to 1.

6Refer to appendix A for the calculation of PR.

can be represented mathematically and how to compute ρ′d
using a linear transformation applied to ρd7. We build a k×k
matrix K by filling it with ones in the position (i, i) if the
document d is true in the world wi – representing the term
ti – and 0 in the other positions. Corresponding to each row
i where (i, i) is equal to zero we set to 1 the entry (i, j) if
the world (term) wj is the closest world (term) to wi where
d is true. In representing K, the non-diagonal entries which
have value 1 encode the movement of probabilities from the
term i to the term j. Thus, the density operator ρ′d after LI
is expressed by the transformation τ : ρd →τ ρ′d, where the
transformation is represented by ρ′d = KT ρdK.

Let us analyze the proposed transformation KT ρdK. In
particular, ρdK will generate a matrix whose diagonal entries
are the original probabilities for the d–worlds and 0 otherwise.
The probabilities associated with the not d–worlds are not
lost but moved to the position (i, j) where i is the index
associated with the term ti representing a not d–world and
j the one associated with the closest d–world to ti, namely
tj . After applying the transformation ρdK we obtain a matrix
whose columns contain the probabilities that are associated
(after LI) with term index of each column. Note that K
encodes in an intuitive way the information about the source
of the probabilities involved in the LI process. It allows
us to understand which terms contribute to incrementing
the probability associated with the d–term tj by selecting
column j of K and considering its non–zero components:
in correspondence with such components there would be the
not d–terms which move their probabilities to tj . In order to
complete the transformation, KT has to be applied, obtaining
the new density operator ρ′d on whose diagonal entries the
probabilities of each term in the term–space after LI are
encoded. That is ρ′d(i, i) =

∑k
r=1 KT

i,r(
∑k
s=1 ρdi,sKs,i). Let

us consider the following example in order to understand better
the behaviour of the proposed operator in the description of the
probability kinematics induced by LI. Suppose a document d1

is represented by terms “bat” and “hit”; the probabilities of
the terms in the information space are encoded in the diagonal
entries of the density operator ρd1 (Fig. 2). Given that the
most similar term to baseball and to night is bat, while the
most similar one to cricket and to ball is hit, we can encode
this information in the kinematics operator K (Fig. 3). By the
application of τ : ρd1 →τ ρ′d1 we obtain the operator ρ′d1 as
shown in Fig. 4.

ρd1 =

266666664

bat ball night cricket hit baseball
0.2 0 0 0 0 0
0 0.1 0 0 0 0
0 0 0.05 0 0 0
0 0 0 0.2 0 0
0 0 0 0 0.3 0
0 0 0 0 0 0.15

377777775
Fig. 2. The density operator ρd1

7The density operator associated with a document before the LI process is
given by ρd =

P
ti∈Wd

αi(
Pn

k=1 λi,k
2 |ek〉 〈ek|), where αi is the original

probability of term ti.



K =

2666664
1 0 0 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 1 0
1 0 0 0 0 0

3777775
Fig. 3. The Kinematics operator K

ρ′d1 = KT (ρd1K) = KT

26666664
0.2 0 0 0 0 0
0 0 0 0 0.1 0

0.05 0 0 0 0 0
0 0 0 0 0.2 0
0 0 0 0 0.3 0

0.15 0 0 0 0 0

37777775 =

=

26666664
0.4 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0.6 0
0 0 0 0 0 0

37777775
Fig. 4. The density operator ρ′d1

obtained after LI

A. Analogy to the Schrödinger Picture

It is interesting to note that the proposed kinematics operator
plays a similar role to the evolution operator in the Schrödinger
Picture. In fact, the time evolution of a density operator D rep-
resenting a state is given by the Schrödinger equation, stating
i~dD(t)

dt = HD(t), from which an evolution operator U(t)
can be defined as U(t) = exp(−iHt~ ). The evolution operator
is the counterpart of the introduced kinematic operator and
provides the analogy between the dynamics of a quantum
system and the transferring of probabilities in the LI process.

However, there is one main difference between the two
operators. The evolution operator is unitary: U(t)U†(t) =
U†(t)U(t) = I 8. In particular, if the entries of U are
restricted to the real numbers, then U† becomes UT, and
since U is an orthogonal matrix, then the equality UT = U−1

is valid. Moreover, the operator U conserves the inner prod-
uct, 〈U(t)β|U(t)α〉 = 〈β|α〉. Beltrametti and Cassinelli [4]
write that “the dynamical evolution expressed by D(t2) =
U(t2)D(t1)U†(t2)9 preserves the convex structure of states:
if D(t1) is a mixture, say D(t1) = w1D′(t1) + w2D′′(t1),
then D(t2) = w1D′(t2) + w2D′′(t2). [...] The preservation
of the convex structure of states is, from the physical point
of view, a rather general requirement; nevertheless, there are
some concrete situations in which dynamical evolutions can
occur that do not preserve convexity.” This is the case of the
kinematics operator, because we do not want to preserve the
convex structure of the states: we want the structure to change
instead.

8U† is the self–adjoint (Hermitian) operator to U.
9In their original work Beltrametti and Cassinelli wrote D(t2) =

Ut2−t1D(t1)U−1
t2−t1 , but we prefer to maintain our formulation of such

expression in order to do not generate confusion using different notations
among this paper.

V. RELATED QIR MODELS

Our formalization of LI is based on the metaphor of repre-
senting terms as states of a quantum system and documents as
mixtures of such states. LI is then modeled as a process that
evolves the system by collapsing some of the states into the
states that strictly belong to each document, e.g. the terms in
the document under consideration. Of the QT inspired models
the most similar approaches to ours have been put forward by
[6] and [7]. In [6], terms are similarly represented by states,
but in a wider sense. In fact, the authors suggest interpreting
a word as a massively entangled state which would collapse
into a simpler state once a particular meaning related to the
word has been selected. This suggests that at the time of
collapse the current context would influence the target state
into which the superposition is collapsed. The same approach
is taken in [7] in which words belonging to a semantic space
are associated with quantum particles. Specifically, when the
context of a word is not considered, it is represented by a
superposition of states, each one of which is associated instead
with one of the particular meanings of the term. Since a
density operator is associated with each of the basis states
(i.e. one of the several possible senses of a term), the single
eigenvector associated with such density operator represents
a source of context–sensitive information between the asso-
ciations carried by the semantic vector under consideration.
Thus, all the meanings associated with a word give rise to a
complex density operator which can be constructed as a linear
combination of simpler density matrices associated with each
of the meaning. Moreover, a probability can be ascribed to
each meaning of a word; formally ρt = α1ρ1 + . . . + αmρm
represents the density operator corresponding to term t in an
uncertain context as linear combination of its m meanings
ρ1, . . . , ρm weighted by the probability of the related meaning.
Conversely, in our approach we associate a document to a
density operator constructed as a linear combination of the
density matrices associated with the terms in the information
space. Successively, the collapse of the density operator into
a new representation by means of the application of the
kinematics operator addresses the belief revision required by
LI. This is similar to the way the expression of the context
declaration (i.e. the specific meaning of a term) is modeled by
the collapse of the density operator [7]. Consequently the way
in which we have formalized LI in the QT is able to take into
account the specific context of the terms, which enables the
more precise incorporation of context within the model; and
paves the way for developed a context based LI model, which
we shall explore in further work.

VI. CONCLUSION

The main contribution of this paper is the formalization
of the LI IR model within a QT framework. The benefit of
this approach is that contextual information can be injected
in the LI technique. We have illustrated how to model the
transfers of probabilities involved in the LI process by means
of the kinematic operator. The kinematics operator, based on
the Schrödinger Picture, will be the subject of future research.



In particular, we are interested in investigating the utility of
a particular tessellation of the geometric space, namely the
Voronoi diagrams (VoDs). In fact, we believe that VoDs can
effectively model the underling contextual evidence intrinsic
in the information space used in our QT framework. Further, it
can be potentially be used to guide the updating of probability
caused by the application of the kinematics operator. In future
work, we will explore two main directions; how VoDs can be
incorporated to produce context based LI models, and how
well these QT inspired models perform against the original LI
IR models and state of the art IR models.
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APPENDIX A
In the following we suggest how to compute the projector PR associated

with the subspace JPd → PqK, also known as the Subspace conditional
(S-conditional)[24]. This subspace is defined by JPd → PqK = {|x〉 :
PqPd|x〉 = Pd|x〉, |x〉 ∈ Pq}. Following [24], the semantics of Pd → Pq

is given by JPd → PqK = JPdK⊥ ⊕ (JPdK ∩ JPqK), where JPiK⊕ JPjK
is the smallest subspace containing Pi and Pj . Let us examine the case in
which the projectors of document and query do not commute. Then, Pd∧Pq

is given by limn→∞(PdPqPd)n, and Pd ∨Pq = (P⊥d ∧P⊥q )⊥ is given
by I−limn→∞((I−Pd)(I−Pq)(I−Pd))n. Thus, the projector associated
with the subspace JPd → PqK is computed as PR = I − limn→∞((I −
Pd)(I− limn→∞PdPqPd)n(I−Pd))n.

APPENDIX B
A density operator is in an one–to–one relationship with the states of a

quantum system. These states could be pure statesor a mixture of pure states.
For an infinite Hilbert space, a vector |ϕ〉 is a mixture if a pairwise orthogonal
sequence 〈〈|bi〉〉〉 of unit vectors10 and a sequence 〈〈λi〉〉 of real numbers
such that (i) λj ∈ [0, 1], (ii)

P∞
i=1 λi = 1 and (iii) ϕ =

P∞
i=1 λi |bi〉 exist

[9]. Then, a density operator ρ is strictly defined as ρ =
P∞

i=1 λ
2
i |bi〉 〈bi|.

Since we are operating on a finite n–dimensional subspace of a Hilbert
space, the sum can be bounded from i = 1 to i = n. We want to prove
that ρ′d =

P
ti∈Wd

α′i(
Pn

j=1 λi,j
2
˛̨̨
ej

ED
ej

˛̨̨
) respects the definition of

density operator. Let us assume Wd = {t1, t2} (it is straight forward then
to generalize this demonstration from two worlds to n). Then,

ρ′d =
P

ti∈Wd
α′i(

Pn
k=1 λi,k

2 |ek〉 〈ek|) =

α′1(λ1,1
2E1 + λ1,2

2E2) + α′2(λ2,1
2E1 + λ2,2

2E2) =
(α′1λ1,1

2 + α′2λ2,1
2)E1 + (α′1λ1,2

2 + α′2λ2,2
2)E2

Thus we have to demonstrate that the terms which multiply the Ei sum to 1:

α′1λ1,1
2 + α′2λ2,1

2 + α′1λ1,2
2 + α′2λ2,2

2 =
α′1(λ1,1

2 + λ1,2
2) + α′2(λ2,1

2 + λ2,2
2) = α′1 + α′2 = 1.

If the above applies then ρd is a density operator. The probability distribution
defined on the set of all terms induces a new distribution. In particular, the
latter is a probability distribution over the set of pure states – pure meanings,
which can be interpreted as non-ambiguos meanings such as meanings only
pertaining to single terms– of the subspace JTK. In fact, we can express ρ′d
with respect to the projectors E1, ...,En for a space of dimension n: ρ′d =
(α′1λ1,1

2 + ...+α′nλn,1
2)E1 + ...+(α′1λ1,n

2 + ...+α′nλn,n
2)En =

p1E1 + ...+ pnEn where p1, ..., pn sum to 1. Moreover, each pi is in the
range [0, 1]: then p1, ..., pn is a probability distribution over the projectors
E1, ...,En, which represent the projectors of the canonical basis for a space
of dimension n.

10A sequence given by vectors of the orthonormal basis.


