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Abstract

In this paper we present a new language model based on an
odds formula, which explicitly incorporates document length
as a parameter. Furthermore, a new smoothing method called
exponential smoothing is introduced, which can be combined
with most language models. We present experimental results
for various language models and smoothing methods on a col-
lection with large document length variation, and show that
our new methods compare favorably with the best approaches
known so far.
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1 Introduction

Since the first language model for information retrieval were
presented [7], [2], [4], a large variety of models of this kind
have been proposed. However, with the exception of [3], little
attention has been paid to the influence of document length,
and only a few approaches have considered this parameter ex-
plicitly.

In the next section, we present a new language model which
includes document length as a genuine parameter. We start
along the lines of the classic Zhai/Lafferty [8] model and
present a probability and an odds model as variations of this
basic model. Section 3 introduces a new smoothing method
for combining the relative term frequencies in the current doc-
ument and the whole collection into a single probability esti-
mate. As alternative to this smoothing method, we also con-
sider the classic smoothing methods regarded by Zhai and Laf-
ferty, and then present experimental results for the INEX col-
lection in Section 5, where we regard each XML element as
a document, thus having a collection with a large variation of
document lengths.

2 Models

2.1 Basic model

We first introduce a basic probabilistic language model, which
also forms the basis for Zhai and Lafferty’s model.

Let q denote a query containing the set of termsqT , andd is
a document with the set of termsdT . Furthermore, letti denote
a term andC stands for the collection. Then we compute the
probability that the documentd implies the queryq, as follows:

P (q|d) =
∏

ti∈qT

P (ti|d)

=
∏

ti∈qT∩dT

Ps(ti|d)
∏

ti∈qT−dT

Pu(ti|d)

=
∏

ti∈qT∩dT

Ps(ti|d)
Pu(ti|d)

∏
ti∈qT

Pu(ti|d) (1)

Here we have the following probabilities:

P (d) Probability thatd implies an arbitrary query

Ps(ti|d) Probability thatd implies termti, given thatti occurs
in d

Pu(ti|d) Probability thatd implies termti, given thatti does
not occur ind

2.2 Zhai/Lafferty model

The basic idea of Zhai and Lafferty is the estimation of the
probability Pu(ti|d) of terms not occurring in the document,
by means of the following formula:Pu(ti|d) = adP (ti|C).
Heread is a document-dependent constant estimated in the fol-
lowing way:

ad =
1 −

∑
ti∈qT∩dT Ps(ti|d)

1 −
∑

ti∈qT∩dT P (ti|C)

Regarding the logarithmic form of eqn1, their retrieval
function yields:



log P (q|d) =
∑

ti∈qT∩dT

log
Ps(ti|d)

ad · P (ti|C)
+ n log ad

+
∑

ti∈qT

log P (ti|C)

where n is the length of the query.

2.3 An Odds model

As an alternative to the basic probability model described
above, we propose an odds-like model. For that, we regard
the implication in the opposite direction, namely that the query
implies the document, which we divide by the probability that
the query implies an arbitrary documentd̄ different fromd; the
latter factor can be regarded as some kind of normalization,
which allows us to consider document length in a straightfor-
ward way. Applying Bayes’ theorem and the standard inde-
pendence assumptions, we get:

P (d|q)
P (d̄|q)

=
P (q|d)
P (q|d̄)

· P (d)
P (d̄)

=
∏

ti∈qT

P(ti|d)
P(ti|d̄)

P (d)
P (d̄)

=
∏

ti∈qT∩dT

Ps(ti|d)
Ps(ti|d̄)

∏
ti∈qT−dT

Pu(ti|d)
Pu(ti|d̄)

· P (d)
P (d̄)

In addition to the parameters defined for the probability
model, we have the following probabilities here:

P (d̄) Probability that an arbitrary document6= d implies an
arbitrary query.

Ps(ti|d̄) Probability that an arbitrary document6= d implies
termti, given thatti occurs in that document.

Pu(ti|d̄) Probability that an arbitrary document6= d implies
termti, given thatti does not occur in that document.

3 Smoothing methods

The major problem in the application of language models is
the estimation of the probabilityPs(ti|d). For this purpose,
various methods have been proposed in the past. As input for
the estimation step, all known methods consider (at least) the
following two parameters:

PML(ti|d) Maximum likelihood-Estimate ofP (ti|d), i.e. the
relative frequency ofti in d

Pavg(ti|C) The average probability of observingti in the col-
lectionC, i.e. the relative frequency ofti in the text of the
whole collection

In the following, we first describe three popular smoothing
methods, and then we present our own new method.

3.1 The Jelinek-Mercer method

This method involves a linear interpolation of the maximum
likelihood model with the collection model, using a smoothing
coefficientλ to control the influence of collection model. The
resulting probability estimate is calledPs,λ here:

Ps,λ(ti|d) = (1 − λ) · PML(ti|d) + λ · Pavg(ti|C)

3.2 Bayesian parameter estimation

Typical smoothing methods in language models are length-
independent. On the other hand, it is obvious, that the maxi-
mum likelihood estimate is more biased for shorter documents.
When the documents in the collection are of almost uniform
length (which is the case for the largest part of the TREC
collections), this effect can be compensated by document-
independent smoothing parameters. However, in a collec-
tion with a big variation in document lengths, a document-
dependent smoothing factor may be more adequate. One pos-
sible approach following this strategy is Bayesian parameter
estimation. Since a language model is a multinomial distribu-
tion, the corresponding conjugate prior is the Dirichlet distri-
bution with parameters

(µP (t1|C), µP (t2|C), ...., µP (tn|C))

and the estimate ofPu(ti, d) is given as

Ps,µ(ti|d) =
c(ti; d) + µP (ti|C)∑

ti∈dT c(ti; d) + µ

wherec(ti; d) is the number of occurrences ofti in d.

3.3 Absolute discount

This method is similar to Jelinek-Mercer, but differs in that it
discounts the seen word probability by subtracting a constant
instead of multiplying it by(1 − λ).

So the estimate ofPu(ti, d) is given as

Ps,δ(ti|d) =
max(c(ti; d) − δ, 0)∑

ti∈dT c(ti; d)
+ σP (ti|C)

where

δ is a discounting constant,

σ = δ·|dT |
|d| , with

|d| denoting the document length, and

|dT | is the number of unique terms in documentd



3.4 Exponential smoothing

As a new, alternative way of smoothing, we propose an expo-
nential formula for combiningPML(ti|d) andPavg(ti|C) as
an estimate ofPs(ti, d). In a similar way, we estimatePu(ti|d)
as a function ofPavg(ti|C). More precisely, our estimates are:

Ps,e(ti|d) = PML(ti|d)αd · Pavg(ti|C)1−αd

Pu,e(ti|d) = Pavg(ti|C)βd

Hereαd andβd are (possibly document-dependent) smoothing
factors.

In the same way, we estimatePs,e(ti|d̄) andPu,e(ti|d̄) with
different smoothing factors.

Ps,e(ti|d̄) = PML(ti|d)µd · Pavg(ti|C)1−µd

Pu,e(ti|d̄) = Pavg(ti|C)δd

Pu,e(ti|d)
Pu,e(ti|d̄)

= Pavg(ti|C)βd−δd = Pavg(ti|C)γd

Ps,e(ti|d)
Ps,e(ti|d̄)

= PML(ti|d)αd−µd · Pavg(ti|C)−αd+µd

= PML(ti|d)ωd · Pavg(ti|C)−ωd

Applying exponential smoothing to our odds model, we get
the retrieval function

ρo,e =
∏

ti∈qT∩dT

PML(ti|d)ωd · Pavg(ti|C)−ωd

·
∏

ti∈qT−dT

Pavg(ti|C)γd · P (d)
P (d̄)

=
∏

ti∈qT∩dT

(
PML(ti|d)
Pavg(ti|C)

)ωd

·
∏

ti∈qT−dT

Pavg(ti|C)γd · P (d)
P (d̄)

Here we have the additional parametersP (d) and P (d̄).
The former denotes the probability that documentd implies
a random query, while the latter denotes the same probability
for an arbitrary document different fromd. As a first approxi-
mation, we assume that these probabilities are proportional to
document length, which we use as estimates in the experiments
described below. In a similar way, the probability model with
exponential smoothing yields

ρp,e =
∏

ti∈qT∩dT

PML(ti|d)αd

Pavg(ti|C)βd+αd−1

∏
ti∈qT

Pavg(ti|C)βd

Since the second factor is independent of the specific docu-
ment, we can also ignore it when we are only interested in the
ranking of the documents.

Figure 1: Distribution of document length in our test collec-
tion

Losada and Azzopardi [3] studied different Language Mod-
eling smoothing strategies from a document length retrieval
perspective and showed that the document length retrieval pat-
tern of major importance in Language Modeling for Informa-
tion Retrieval. In some initial experiments, we also noticed
that document length plays an important role and significantly
improves the retrieval quality. For this reason, we decided to
regard a variant of the probability model which incorporates
document length, thus leading to the retrieval function

ρd
p,e =

∏
ti∈qT∩dT

PML(ti|d)αd

Pavg(ti|C)βd+αd−1
· p(d)
p(d̄)

4 Test collection and evaluation metrics

For our experiments, we used the INEX 2005 IEEE collec-
tion [1], version 1.9. This collection consists originally of
17,000 journal articles in XML format, comprising 764 MB
of data. For our experiments, we regarded each XML element
as an independent document XML documents, thus leading to
a collection of 21.6 million documents with a collection size
of more than 253 million words. Figure 1 shows the distribu-
tion of document lengths in our test collection. Here document
length ranges from 1 to 17784. We obviously have a linear
relationship between the logarithms of document lengths and
frequency. This is certainly a kind of document length distri-
bution which can only be found in the special setting we are
regarding here, namely retrieval of XML elements. On the
other hand, this situation also serves as a good test case for in-
vestigating the influence of document length variation on the
retrieval quality of language models.In principle, our approach
can be regarded as the first step of an XML retrieval engine,
where initially the most relevant answer elements are deter-
mined, and then the structural relationships between these el-
ements (i.e., two or more elements from the same document,
or even one answer element containing another one) are ad-
dressed in the second step of the retrieval process. However,
since the focus of this paper is on language models and docu-
ment length, we consider the first step of this process only.

As search requests, we used the so-called CO queries from
INEX, which are free text queries. For our experiments, we



Table 1: Best results for Odds model (γ = 0.2) with and
without using document length

Omega Normal model using DL Ignoring DL

0 0.006 0.016

0.1 0.014 0.002

0.2 0.038 0.002

0.3 0.064 0.002

0.4 0.078 0.002

0.5 0.080 0.002

0.6 0.076 0.002

0.8 0.068 0.002

0.9 0.063 0.002

Table 2: Best results for Prob. model (β = 1) with and without
using document length

Alpha Normal model using DL Ignoring DL

0 0.006 0.018

0.1 0.020 0.027

0.3 0.059 0.027

0.4 0.076 0.027

0.5 0.079 0.027

0.6 0.076 0.027

0.8 0.070 0.027

0.9 0.063 0.027

considered the 29 queries from INEX 2005 (version 003)
along with the official adhoc 2005-assessments-v7.0. These
assessments judged relevance with respect to two dimensions,
namely specificity and exhaustivity [5]. Here we regard the ex-
haustivity dimension only, since specificity targets at the most
specific answer element in a document (which should be ad-
dressed in the second step of the retrieval process sketched
above). For grading exhaustivity, relevance assessors had to
chose from 3 + 1 levels: highly exhaustive (e = 2), somewhat
exhaustive (e = 1), not exhaustive (e = 0) and too small (e
=?).Given the graded relevance (exhaustivity) scale, we mea-
sured retrieval quality with the EPRUM (Expected Precision
Recall with User Model) metrics which was developed within
INEX [6], 1. This metric is based on a more realistic user
model which encompasses a large variety of user behaviours.
It supposes a set of ideal results. Recall is defined as the ra-
tio of the number of retrieved ideal elements to the number
of relevant elements. The ideal run is defined as the run that
maximizes the recall for each rank. Precision is defined as the
ratio of the number of the length of an ideal run for achieving
the same level of recall to the size of the retrieved list. The
two definitions are generalization of precision and recall in the
standard case.

5 Experimental results

First, we regarded the effect of considering document length.
For the Odds and the Probability model, Tables 1 and 2 show
the best results with and without considering document length
(using exponential smoothing); for the Odds model, the fac-
tor p(d)

p(d̄)
was omitted from the retrieval formula forρo,e when

1http://inex.is.informatik.uni-duisburg.de/2005/Metrics.html
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Figure 2: Precision-rank curve for the best runs

document length was ignored; in the case of the Probability
model, the functions forρd

p,e andρp,e were compared. The ex-
perimental results show huge performance differences for both
kinds of models. So document length is an important factor for
achieving good retrieval results when dealing with collections
of varying document size.

In a second series of experiments, we investigated the ef-
fect of exponential smoothing on the performance of the Odds
and the Probability model. For this purpose, we varied the
values of the smoothing parameters between 0 and 1 and per-
formed a large number of runs. The MAP values of these ex-
periments are shown in Tables 3 and 4, Our results indicate
that the retrieval performance is very sensitive to the values
of the smoothing parameters. For the Probability model, the
best results were achieved whenβ approaches one andα takes
values between 0.4 and 0.8. For the Odds model, the retrieval
performance was the highest forγ = 0.2 andω between 0.4
and 0.6.

Finally, we compared the best results of our new models
and smoothing method with those of the Zhai/Lafferty model
and known smoothing methods. The results depicted in Ta-
ble 5 indicate that the Probability and the Odds model yield
their best results when combined with the exponential smooth-
ing, and they even outperform the Zhai/Lafferty model. For
the latter, the best results were achieved in combination with
Bayesian Dirichlet smoothing. We think that this outcome is
due to the fact that Bayesian Dirichlet is the only smoothing
method which explicitly considers document length. In con-
trast, other smoothing methods lead to very poor performance
figures for the Zhai/Lafferty model. So this model should
only be used in combination with Bayesian Dirichlet smooth-
ing when being applied to collections with varying document
size. The results of the three best combinations (Probability
and Odds model with exponential smoothing, Zhai/Lafferty
with Bayesian Dirichlet) are also illustrated in the precision-
rank curve shown in Figure 2.



Table 3: Influence of Omega and Gamma parameters on MAP
when using Odds model

Omega Gamma

0 0.1 0.2 0.3 0.5 0.8 0.9

0 0.005 0.003 0.006 0.006 0.008 0.012 0.013
0.1 0.011 0.013 0.014
0.2 0.033 0.036 0.038
0.3 0.060 0.062 0.064
0.4 0.076 0.077 0.078 0.066 0.052
0.5 0.079 0.079 0.080 0.080 0.060
0.6 0.076 0.076 0.076
0.8 0.068 0.068 0.068 0.061 0.052
0.9 0.063 0.063 0.063 0.062 0.060 0.052 0.059

Table 4: Influence of Alpha and Beta parameters on MAP
when using Prob. model

Alpha Beta

0.1 0.2 0.5 0.9 1

0.1 0.003 0.003 0.003 0.004 0.020

0.3 0.003 0.003 0.003 0.013 0.059

0.4 0.003 0.003 0.003 0.037 0.076
0.5 0.003 0.003 0.003 0.057 0.079
0.6 0.003 0.003 0.003 0.063 0.076
0.8 0.003 0.003 0.007 0.061 0.070

0.9 0.003 0.003 0.014 0.060 0.063

Table 5: Best results for models and smoothing methods:
Prob. model (α = 0.5, β = 1), odds model (ω = 0.5, γ = 0.2)
and the ZL model (µ = 2, 000)

Smoothing Model MAP Prec at 5 Prec at 10 Prec at 20

Exponential Odds 0.080 0.348 0.348 0.323
Prob. 0.079 0.359 0.364 0.336

Zhai/Lafferty 0.004 0.015 0.013 0.016

Jelink Odds 0.047 0.180 0.180 0.170
Mercer Prob. 0.051 0.180 0.180 0.170

Zhai/lafferty 0.040 0.180 0.150 0.140

Baysian Odds 0.041 0.235 0.235 0.235
Dirichlet Prob. 0.063 0.300 0.290 0.290

Zhai/Lafferty 0.078 0.338 0.324 0.307
Absolute- Odds 0.002 0.009 0.006 0.004
discount Prob. 0.002 0.012 0.009 0.007

Zhai/Lafferty 0.004 0.006 0.006 0.006

6 Conclusion and Outlook

In this paper, we presented a new language model based on
an odds formula, as well as a new smoothing method called
exponential smoothing. Experiments performed on a collec-
tion with large variations in document length showed that doc-
ument length is an important factor for language models, so
models ignoring this parameter lead to very poor results. Our
new model along with the new smoothing method give very
good results. With variants of the document length parame-
ter and (possibly) document-specific smoothing, there are still
possibilities for further improvement.
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