
An MDA Approach to Implement Personal IR Tools

Sven Meyer zu Eissen Benno Stein
Faculty of Media, Media Systems

Bauhaus University Weimar, Germany,
{sven.meyer-zu-eissen | benno.stein}@medien.uni-weimar.de

Abstract

We introduce TIRA1, a software architecture for the rapid
prototyping of tailored information retrieval (IR) tools.
TIRA allows to compose personal IR tools from atomic IR
services, following the model driven architecture (MDA)
paradigm: In a first step, an IR process is defined indepen-
dently from platforms, by means of a UML activity diagram.
In a second step, the activity diagram is transformed to a
platform specific model, which is executed in a distributed
environment.

Major driving force behind our research is the question
of personalization: We see a large gap between informa-
tion retrieval theory and algorithms on the one hand and
their implementation and deployment to satisfy a personal
information need on the other. This gap can be closed with
adequate software engineering means, and TIRA shall con-
tribute in this respect.

1. Introduction

Information retrieval (IR) is considered as key technol-
ogy to address the problem of information overload, which
is caused by global information accessibility and the in-
creasing number of “information creators”. Note that infor-
mation retrieval is not a universal answer to a generic infor-
mation need problem but a collective term for myriad solu-
tions to individual information need problems. To become
an effective means, retrieval technology must be adapted to
personal information needs, which pertains among others to
the following points:

1. Personal Data. Document sources on which retrieval
tasks are carried out include local hard drives, the Web,
or intranets.

2. Personal Preferences. Typical preferences are lan-
guage and local settings, or an individual style for re-
sult preparation.

1Acronym for Text-based Information Retrieval Architecture.

3. Personal Skills. This characteristic comprises a user’s
creativity to formulate queries, his/her ability to im-
prove queries iteratively upon search engine feedback,
or background knowledge about the retrieval strategies
of search engines.

4. Personal Knowledge. Even when a personal query
formulation skill is highly developed, retrieval suc-
cess still depends on a user’s knowledge of the query
domain and the underlying collection (e.g. technical
terms). This observation applies especially to closed
collections or topic-centered collections in corporate
intranets.

5. Personal IR Tasks. Advanced personal information
needs cannot be suitably addressed with a keyword
query approach but require the statement of a tailored
IR process. Examples include plagiarism detection,
opinion extraction, and filtering according to docu-
ment quality.

We argue that the current generation of IR tools is not
flexible enough to address the above points, especially
Point 5. The “course of action” in current IR tools is hard-
wired, i. e., a user is restricted to specify a query along with
a few parameters and cannot adapt or even design the re-
trieval process itself. We propose an IR software architec-
ture that follows a service composition paradigm: Given an
advanced IR problem, a tailored tool that solves this prob-
lem shall be constructed by simply selecting and connecting
services from a set of “IR building blocks”. Our architecture
allows to specify and to store personal IR tasks on a user’s
personal device and to execute these tasks in a distributed
environment.

The remainder of this paper is organized as follows. Sec-
tion 2 relates IR theory to IR software and motivates the
service-oriented approach, Section 3 discusses formalisms
to specify IR processes, and Section 4 introduces architec-
tural concepts behind TIRA.

2. From IR Theory to IR Software

Depending on the retrieval task a document d can be
viewed under different aspects: layout, structural or logical
setup, or semantics. A computer representation d of d must
capture the required portions of theses aspects. For this pur-
pose information retrieval theory put forth the necessary un-
derpinning: linguistically motivated retrieval models, algo-
rithms for text analysis, data structures for managing giga-
bytes, or new statistical insights. Based on these results d

can be designed purposefully, with respect to the structure
of a formalized query, q, and also with having a particular
retrieval model, R, in mind. R provides the linguistic ra-
tionale for the model formation process behind the mapping
d 7→ d and provides a concrete means, ρ(q,d), for quan-
tifying the relevance between a formalized query q and a
document’s computer representation d.

The operationalization of future IR processes is far off
from being a standard software engineering task, since the
retrieval model R shall be adaptable to personal informa-
tion needs. Current implementation practice is to maintain
software libraries that provide generic IR functionality, and
to reuse them in other projects. Although this practice has
approved in general settings, the IR process design situa-
tion comes with properties that allow for a more powerful
modeling perspective:
• IR processes are composed of rather autonomous soft-

ware building blocks, which are called modules here.
Basically, each module provides a service that trans-
forms an input data structure into an output data struc-
ture. Examples for such modules include import fil-
ters, clustering algorithms, validity measures, ranking
functions, classifiers, language taggers, and visualiza-
tion algorithms.

• Information retrieval theory put forth different solu-
tions for one and the same task or for a class of related
tasks.2 Examples include the different approaches
to stemming (statistical algorithms, rule-based algo-
rithms [8]) and to keyword extraction (internal versus
external methods, corpus-based methods).

• Several tasks within an IR process are addressed with
a parameterizable base algorithm.3 Examples include
the language-specific stemming and stopword filtering
[9], which take language-specific rules or word lists as
their input.

• IR processes are subject to frequent change: they
are optimized, tested with new ideas, and adapted to
changing information needs.

• Typically, various parts of an IR process can be exe-
cuted in parallel, especially when documents are ana-
lyzed with respect to different objectives. An example

2Observe the connection to the Strategy Design Pattern [2].
3Observe the connections to the Factory Design Pattern and the Deco-

rator Pattern [2].

Input: 	 URL u, dictionary dict, stopword list stl.

Output: 	 genre and topic class for the document at URL u.

Text ht=download(u);

Text plain=removeHTMLTags(ht);

Text filtered=removeStopwords(plain, stl);

Features topicModel=

 buildTopicModel(filtered, dict);

Language lang=detectLanguage(plain);

Features presentF=buildPresentationF(ht);

Features posF=buildPOSF(plain, language);

Features genreModel=union(presentF, posF);

int topicClass=classifyTopic(topicModel);

int genreClass=classifyGenre(genreModel);

return(topicClass, genreClass);

Figure 1. IR process for the sample categorization
task, specified in pseudo code.

is the intrinsic similarity analysis of a document col-
lection with respect to topic, to genre, as well as to
writing style [4, 10].

• A set of standard modules that is useful for virtually
any IR process can be identified. Examples include
modules for stemming, modules for stopword removal,
and conversion modules for binary formats like Adobe
Acrobat (PDF) or Microsoft Word.

These points exhibit the modular nature of IR processes
and, in particular, the benefits when this nature is actually
exploited. For the design of IR tools we now introduce a
two-step procedure: In a first step an IR process is specified
in a diagrammed form; in a second step, this specification
is automatically instantiated and deployed as a distributed
software system.

3. Specification of IR Processes

Consider as an example an IR task where a document
shall be categorized according to both a given topic taxon-
omy and a given genre taxonomy. Figure 1 depicts a spec-
ification of the underlying IR process in pseudo code: The
topic model and the genre model that are constructed from
the document found at an URL u form the input for previ-
ously built classifiers. Note that several text representations,
including HTML text, plain text, and filtered text are neces-
sary to perform the task.

This kind of specification is current practice in a—what
we call—library-based modeling approach, but it does not
take the nature of IR processes into account: (i) the replace-
ment of a module entails tedious and error-prone code and
data structure replacements, (ii) it requires in-depth knowl-
edge concerning the library, (iii) the exploitation of the con-
currency between particular subtasks leads to an inflexible
design since such behavior must be hard-wired in the un-
derlying execution model (in the form of threads or remote
function calls), (iv) the deployment strategy must be hard-
wired as well.

We propagate to specify an IR process at a conceptual
level, by means of a diagrammed modeling language. In
the past, different modeling tools have been proposed for
similar purposes; they can be classified as control flow dom-
inant, data flow dominant, struture-oriented, time-oriented,
data-oriented, and hybrid approaches [12].

Most IR processes can be considered as data flow dom-
inant, i. e., they are invoked by a user who asks to process
a query, whereas a module can be executed only if its pre-
ceding modules have delivered their data. In addition to
prescribing data dependencies, a modeling approach for IR
processes must allow for defining concurrency (branching
and synchronization) since parts of an IR process may be
executed in parallel. Moreover, a modeling approach should
support explicit typing in order to analyze module compo-
sition constraints with respect to input and output parame-
ters. Finally, depending on the modeling granularity, it can
be useful to define iterations on parts of an IR process as
well as conditions on the produced data. In the following
we argue why UML activity diagrams [7] provide adequate
modeling capabilities to specify IR processes.

UML activity diagrams combine novel ideas from Web
service flow languages like BPEL [1] with traditional con-
cepts like the token concept from Petri nets to specify con-
trol flows and data flows between so-called actions. In par-
ticular, action nodes, object nodes, and control nodes are
connected with directed edges that specify either a data flow
or a control flow [3]. Figure 2 shows an activity diagram of
the IR process for our sample categorization task.

In UML activity diagrams the action nodes represent
tasks, which are software modules in our setting. Object
nodes may be placed between action nodes, representing
data objects that are transferred between action nodes. Al-
ternatively, connectors, called “pins”, which are attached to
the action nodes, can specify the data type that is accepted
as input or produced as output by an action node.

Control nodes further divide into decision nodes, merge
nodes, fork nodes, and join nodes. Decision nodes delegate
control flow exclusively to one of several possible branches,
depending on a condition bound to the node; their counter-
part are merge nodes. Concurrency is modeled with fork
nodes and join nodes, which indicate the concurrent exe-
cution and the subsequent synchronization of control flows
and data flows. Finally, buffer nodes, which are specialized
object nodes, can be used to define a buffering strategy for
concurrent processing.

An activity diagram may be partitioned into so-called
swimlanes in order to group nodes and edges according to
common properties. Such logical groups are oriented at
the user-defined semantics (a closed sub-retrieval-task for
example) and allow for the structuring of complex IR pro-
cesses.

Download

Plain text

extraction

Feature union

Stopword

removal

Topic

model builder

Topic

classifier

URL

u:URL

hyperText:Text

hyperText:Text

plainText:Text

stl:Text

filteredText:Text

dict:Dictionary

topicModel:

FeatureVector

Presentation

feature builder

Language

detection

POS

feature builder

Genre

classifier

genreModel:

FeatureVector

posFeatures:

FeatureVector

presentation

Features:

FeatureVector

lang:Language

hyperText:Text hyperText:Text

topic classgenre class

Figure 2. IR process for the sample categorization
task, specified as UML activity diagram.

Discussion Apart from being intuitive, UML activity dia-
grams are widely accepted as modeling tool. Moreover, ad-
vanced concepts that allow for the modeling of data streams,
parameter sets, stereotypes, action and time events, excep-
tions, and exception handlers render this diagram form ideal
for our purposes. In the upcoming UML 2.1 specifica-
tion, conditional nodes and iteration nodes, which remind
of block diagram elements, will probably be included, mak-
ing UML activity diagrams even more intuitive for control
flow modeling.

4. Operationalizing IR Processes with TIRA

UML activity diagrams are not bound to programming
languages, operating systems, middleware, or system ar-
chitectures. I. e., in terms of the model driven architecture
(MDA) paradigm, an IR process specified with a UML ac-
tivity diagram can be considered as a platform-independent
model (PIM) [5]. To make an IR process operable, a target
platform has to be chosen, and the PIM must be transformed
into an executable platform-specific model (PSM).

In this context a platform denotes the next lower abstrac-
tion layer on which a particular model is represented in a
more concrete form. For example, J2EE and CORBA are
possible platforms for a business process implementation,
and, the Java Development Kit in turn is a possible plat-

Operating system

Java Development Kit

XML

object

serialization

XML

object

visualization

PIM specification

PSM generation

Middleware

platform

Computing

platform

IR module library

Web service abstraction

UML activity diagrams:

 compilation, deployment, processing

UML activity diagrams:

GUI, modeling, management

TIRA

Figure 3. The layer architecture of TIRA on top of a
computing platform. The IR module library is not
part of TIRA but provides an extensible container
for IR-related algorithms and data structures.

form for a CORBA implementation. Generally speaking,
the transformations along descending platform layers pre-
scribe the path by which a PIM is rendered executable. The
OMG denotes a platform that is in-between the PIM and
executable code as middleware platform [5].

Just as within other MDA-based application scenarios it
is our objective to define, to develop, and to implement the
transformation of a PIM to a lower platform layer. How-
ever, in contrast to many MDA-based application scenarios
we are not interested in the handling of a variety of mid-
dleware platforms and their related transformations, but in
the development of a particular middleware platform that is
suited to execute personal information retrieval tasks. Put
another way: Our focus is on rapid prototyping, reduced
turn-around times, and minimized effort for implementation
and test.

Figure 3 shows our implemented proposal for the layer
architecture of TIRA: The input PIM is an IR process, mod-
eled as UML activity diagram; a PIM can be compiled and
deployed, becoming an executable PSM this way. Modules
with the core IR functionality are comprised in an open IR
library. The library encapsulates the modules as Web ser-
vices to make them transparently usable from a PSM via
remote function calls. Data objects that are required or pro-
duced by the IR modules are materialized as XML objects.

4.1. From PIM to PSM

An activity diagram, either loaded from file or modeled
interactively with the TIRA GUI, is represented as an object
structure in computer memory. The structure is oriented
at the UML meta-model [6] and reflects the important ele-
ments of activity diagrams, i. e., there are instances of action
nodes, fork nodes, etc., which are interconnected by data
nodes. The action nodes are bound to IR modules, which
in turn are encapsulated as Web services; the data nodes are
bound to XML objects.

Figure 4 shows the part of TIRA’s class design that mod-
els how action nodes are simulated. Instead of modeling an
IR module as subclass of the action node class, action nodes
are instantiated using a factory class and configured with a
symbolic action name. The factory class looks up the URL
of the Web service that is associated with the action name
at TIRA’s service registry and provides the action node in-
stance with this URL. Each IR module that is registered in
the service registry comes with a self-description in XML
format: input as well as output data types are specified in
XML schema. This approach keeps TIRA open, since it al-
lows for registering and executing new IR modules without
recompiling TIRA’s source.

The object structure is provided with a Petri-net-like to-
ken semantics. Simulating the activity diagram means to
check the availability of an action node’s input data, to al-
locate processing resources, and to call the corresponding
Web service. On delivery of a Web service result, the asso-
ciated data tokens are propagated in the object structure.

4.2. The TIRA Middleware Platform

The functions in the IR module library take objects as
input and return new objects. Instead of supplying the Web
service stubs with serializations of these objects, parameter
passing is realized with the call-by-name paradigm in its
most generic form: a parameter must be a URL, pointing
to a serialized XML representation of the respective object.
This approach comes with the following advantages.

1. When executing an IR process, a client needs not to
transfer the intermediate data between two Web ser-
vice calls; instead, an invoked Web service fetches the
data directly from the given URLs, resulting in reduced
data transfer costs.

ForkNode
 JoinNode

Node
 ActionNodeFactory

+ setName(Name)

+ newActionNode()

ActionNode

- input: Vector<DataNode>

- output: Vector<DataNode>

- next: Vector<Node>

- location: URL

+ setInput(Vector<DataNode>)

+ getOutput(): Vector<DataNode>

+ setNext(Vector<DataNode>)

+ isExecutable(): Boolean

+ execute()

ServiceRegistry

+ lookup(Name):URL

+ addService(Name, URL)

DataNode

- location: URL

- type: String

Figure 4. A part of TIRA’s software design given as UML class diagram

Figure 5. Process modeling with the TIRA editor.
2. When two consecutive modules are executed whose

corresponding Web services are located on the same
server machine, data transfer costs are even lower since
the XML files can be directly accessed.

3. The transfer of URL references instead of data objects
enables low-bandwidth machines to be fully functional
clients. In particular, home users are able to execute
personalized IR processes.

4. The use of URLs opens the World Wide Web as ad-
dress space for data hosting and data sharing.

Because of the broad acceptance of XML the serializa-
tion of data objects as XML streams is the means of choice
for data exchange. Within TIRA powerful parser generation
tools and an XML language binding (JAXB) are responsible
for the reading and writing of XML object streams [11].

Intermediate data that is produced during the execution
of an IR process is made available for visual inspection,
which helps debugging IR processes and lets a user rea-
son about the underlying process. For this purpose the XSL
transformation technology is intensively used in TIRA; XSL
stylesheets are easy to adapt and to maintain, and they are
suited to produce any desired format from the data.

4.3. TIRA at Work

Figure 5 shows a screenshot of the TIRA activity dia-
gram editor, which is implemented as a Java applet. The
left hand side of the applet shows a selection of available
IR modules. A double click instantiates a module, which
is then displayed graphically on the right hand side of the
Applet. The arrows between the modules display the data
flow. A click on a data node invokes the associated XSL
transformation, which translates the corresponding data to
XHTML and displays the results in a browser.

5. Summary

IR processes have reached a ubiquitous presence, be it
in the form of search engines at home or at work, on mo-
bile devices or on workstations, or as retrieval components
in file systems, document repositories, databases, or knowl-
edge management tools. The reason for this pervasion is
the growing information need, the diversity of IR tasks, and
the desired degree of personalization. Although special-
ized retrieval algorithms have been developed in the past,
less work has been done on modeling and operationaliz-
ing IR processes from a software engineering point of view.
This paper contributes to this aspect. Starting from a dis-
cussion of modeling approaches for IR processes we intro-
duced TIRA, a flexible MDA solution for the rapid proto-
typing of tailored IR tools. TIRA allows a user to model
an IR process as UML activity diagram, which is automati-
cally transformed into a problem specific model and, based
on the TIRA middleware platform, executed by the press of
a button.

References

[1] T. Andrews et al. Business process execution language for
web services (bpel4ws) version 1.1.
http://www-128.ibm.com/developerworks/
library/specification/ws-bpel/, May 2003.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison-Wesley, 1998.

[3] M. Hitz, G. Kappel, E. Kapsammer, and W. Retschitzegger.
UML @ Work. dpunkt.verlag, 2005.

[4] Sven Meyer zu Eissen and Benno Stein Genre Classification
of Web Pages: User Study and Feasibility Analysis. In KI
2004: Advances in Artificial Intelligence, Springer, 2004.

[5] Object Management Group (OMG). Model driven
architecture (MDA) guide. http:
//www.omg.org/docs/omg/03-06-01.pdf, 2003.

[6] Object Management Group (OMG). The UML metamodel.
http://www.omg.org/cgi-bin/doc?ptc/
2004-10-05, 2003.

[7] Object Management Group (OMG). The unified modeling
language (UML) specification, version 2.
http://www.uml.org, 2005.

[8] M. Porter. An Algorithm for Suffix Stripping. Program,
14(3):130–137, 1980.

[9] M. Porter. Snowball. http://snowball.tartarus.org/,
2001.

[10] E. Stamatatos, N. Fakotakis, and G. Kokkinakis. Text genre
detection using common word frequencies. In Proceedings
of COLING 2000, Saarbrücken, Germany, 2000.

[11] Sun Microsystems. Java Architecture for XML Binding.
https://jaxb.dev.java.net/, 2003.

[12] J. Teich. Digitale Hardware/Software-Systeme. Springer,
1997.

