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Clustering is the unsupervised classification of d; into groups.

Result is a partitioning C of D.
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Introduction

Given a set of objects (documents) D = {dy,...,d,}.

Clustering is the unsupervised classification of d; into groups.

Result is a partitioning C of D.

Objective: Maximize intra-group similarity.

Minimize inter-group similarity.
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Introduction

Cluster algorithms form the backbone of document categorization.

Example Alsearch [www.aisearch.de] :
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eature [ Similarity (] Cluster
Q(traction computation analysis

Indexing (includes parsing, stopword elimination, stemming):

Documents [] [] Categories

(chrysl er 0.12\

Vector representation deal 0.2
with weighting scheme: | eav 0.1
X| anct 0.01
#abs - log cat 0.0
#docs sal 0.0l
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e. g. under the vector space model:
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Introduction

Feature (] Similarity (] Cluster

Documents [] | 2 ction computation analysis

[] Categories

agglomerative single-linkage, group average
— hierarchical <1—|:
divisive min-cut-analysis
exemplar-based k-means, k-medoid
— Iterative <]—|:
commutation-based Kerninghan-Lin
Cluster <H
approach

— point concentration = DBSCAN
— density-based <H
— cumulative attraction MajorClust

meta-search- <]_— descend-methods simulated annealing

— controlled

— competitive genetic algorithm
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Hierarchical agglomerative: Single-linkage

(O}
©
@@
©
(@)
@ ©
@ o ©
©

Stein/Busch



Introduction

Cluster
Algorithms

Density-based
Algorithms

Analysis

Summary

TIR'05 Sep. 9th, 2005

Hierarchical agglomerative: Single-linkage

©
@@
©
(@)
@@
@ o ©
©

0

O O OO OO0 OO0 00 00 O o oo

Distanz

Stein/Busch



Introduction

Cluster
Algorithms

Density-based
Algorithms

Analysis

Summary

TIR'05 Sep. 9th, 2005

Hierarchical agglomerative: Single-linkage
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Hierarchical agglomerative: Single-linkage
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Single-linkage: Chaining Problem
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Exemplar-based algorithm: £-Means
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Exemplar-based algorithm: £-Means
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Exemplar-based algorithm: k-Means
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Exemplar-based versus Linkage

Exemplar-based algorithms fail with large differences in size.
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Density-based Cluster Analysis

Density-based algorithms try to separate the set D into subsets of
similar densities.

Density estimation can happen

0 parameter-less: histogramm, kernel function
(construct barcharts, superimpose continuous functions)
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Density-based Cluster Analysis

Density-based algorithms try to separate the set D into subsets of
similar densities.
Density estimation can happen

0 parameter-based: the underlying distribution is known

0 parameter-less: histogramm, kernel function
(construct barcharts, superimpose continuous functions)

Example (Carribean Isands):

ATLANTIK

KARIBIK

Stein/Busch



Density-based Cluster Analysis

Density estimation with Gaussian Kernel for the example.

Dominican
Republic

~Puerto
/ Rico

Cuba
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Density-based Cluster Analysis

Density estimation with Gaussian Kernel for the example.

Dominican
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Density-based Cluster Analysis

Density estimation with Gaussian Kernel for the example.
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Density-based Cluster Analysis

Density estimation with Gaussian Kernel for the example.

Dominican
Republic
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Density-based Algorithm: DBSCAN [Ester et al. 1996]
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Density-based Algorithm: DBSCAN [Ester et al. 1996]

Core point

p IS core point:
p IS noise point:

p is border point:

Noise point

|N-(p)| > MinPts.

Border point

9 o
o}
o 'Y
o
(@] OO
° %
O O

p is not density-reachable from a core point.

otherwise.
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Density-based Algorithm: DBSCAN

Core point Noise point Border point
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|N-(p)| > MinPts.
p is not density-reachable from a core point.
otherwise.

p IS core point:
p IS noise point:
p is border point:

p is density-reachable from g¢:

(@) p € |N:(q)|, where ¢ is a corepoint
(b) transitive application of condition (a):
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Density-based Algorithm: DBSCAN

A cluster C' C D satisfies the following conditions:

1. Vp,q: If p € C' and ¢ is density-reachable from p then q € C.

Maximality
condition
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Density-based Algorithm: DBSCAN

A cluster C' C D satisfies the following conditions:

1. Vp,q: If p € C' and ¢ is density-reachable from p then q € C.

Maximality
condition
JNCCLEen 2. Vp, q : pis density-connected to g.
Cluster : . _
Algorithms There is a point o such that both, p and ¢ are density-reachable from o.
Density-based
Algorithms
Analysis Connectivity
condition
Summary
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Density-based Algorithm: DBSCAN

Overall cluster procedure:

1. Select unclassified point p € D.
2. Construct e-neighborhood N.(p).

3. If p IS a core point

Then Insert N.(p) into new cluster C.
Recursively analyze the e-neighborhoods of ¢ € N.(p)
and insert all density-reachable points into C'.

Else Classify p as noise.

Stein/Busch
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Density-based Algorithm

: DBSCAN
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Density-based Algorithm: DBSCAN

Introduction

Cluster
Algorithms

Density-based
Algorithms

Analysis

Summary

TIR’05 Sep. 9th, 2005 Stein/Busch



Density-based Algorithm: DBSCAN
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Density-based Algorithm: DBSCAN
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Density-based Algorithm: DBSCAN
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Density-based Algorithm

: DBSCAN
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Density-based Algorithm

: DBSCAN
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Density-based Algorithm
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Density-based Algorithm: DBSCAN
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Density-based Algorithm: MajorClust

Introduction

Cluster
Algorithms

Density-based
Algorithms

Analysis

Summary

TIR’05 Sep. 9th, 2005 Stein/Busch



Density-based Algorithm: MajorClust

0 Definite majority decision (agglomeration):

0 Definite majority decision (node changes cluster):
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Density-based Algorithm: MajorClust

0 Definite majority decision (agglomeration):

i
K

0 Indefinite majority decision:
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Density-based Algorithm

. MajorClust
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Density-based Algorithm

. MajorClust
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Density-based Algorithm: MajorClust
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Density-based Algorithm

. MajorClust
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Density-based Algorithm: MajorClust
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Density-based Algorithm: MajorClust
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Density-based Algorithm: MajorClust
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Analysis | (low-dimensional)

Geometrical Data—map of the Caribbean Islands (approx. 20,000 points) :
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Analysis | (low-dimensional)

Geometrical Data—map of the Caribbean Islands (approx. 20,000 points) :

ATLANTIK

KARIBIK

DBSCAN:

€=3.0, MinPts =3 €=5.0, MinPts =4

€=10.0, MinPts =5

TIR'05 Sep. 9th, 2005
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Analysis | (low-dimensional)

The problem of choosing a good e-value in DBSCAN.

e = 3.0, MinPts = 3 Two separate
clusters are

found.

Clusters are
merged.
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Analysis | (low-dimensional)

Geometrical Data—map of the Caribbean Islands (approx. 20,000 points) :

ATLANTIK

KARIBIK

MajorClust:
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Analysis | (low-dimensional)

The problem of a global analysis (no e-neighborhood restriction) in MajorClust.
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Analysis Il (high-dimensional)

Document categorization with the Reuters corpus.

Introduction

Cluster

Algorithms

Density-based

Algorithms 0 1000 documents

Analysis 0 10 categories: politics, culture, economics, etc.
Summary o uniformly distributed, exclusive membership

o > 10,000 dimensions
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Analysis Il (high-dimensional)
DBSCAN requires embedding of data in low-dimensional space.

Classification results (F'-Measure) over dimensionality:

1.0
0.9 4
0.8
0.7
° 0.6
E
8 |
€ 05
=
_ “ 04+
Introduction
0.3
Cluster
Algorithms 0.21 — MajorClust (original data)

) % MajorClust (embedded data)
Density-based 0.1 -A- DBSCAN (embedded data)
Algorithms 0
Analysis 2(521) 3(49.1) 4(443) 5(435) 6(40.7) 7(376) 8(351) 9(342) 10(11.6) 11(10.8) 12(10.2) 13(9.6)

Number of dimensions, (Stress)
Summary
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Analysis (runtime)

Runtime-behavior on the geometrical data:

120 |
-=- MajorClust
00— DBJSCA;
_ 80 //
% 60 ~
E /
= 40 /-/
? ///
O-_—-—l‘/ £
0 2000 4000 6000 8000 10000 12000 14000
Number of points
Introduction
Cluster
Algorithms
Density-based Note:
Algorithms
Analysis The embeddding of data in a low-dimensional space (MDS) is
Summary computationally very expensive:

l. e., most cluster algorithms will be faster than DBSCAN + MDS.
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Analysis (runtime)

DBSCAN employes the R-tree data structure for region queries,
which constructs minimum bounding regions for inserted points:

“Existing methods are outperformed on on average by a simple
sequential scan, if the number of dimensions exceeds around 10.

[Weber 99, Gionis/Indyk/Motwani 99-04]
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Summary

An alternative categorization scheme :

Cluster approach

hierarchical iterative density-
based
relative absolute relative
Analysis comparison comparison comparison
strategy based on based on based on
two items k items k items
Recovery_ : irrevocable revocable revocable
characteristics
Introduction
Cluster
Algorithms
Density-based _ _ o _
Algorithms Orthogonal to this scheme is the concept for similarty computation:
Analysis o distance (neighborhood) analysis in low-dimensional space
UL o similarity predicate in arbitrary (high-dimensional) space
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Summary

The strengths and weaknesses of density-based cluster algorithms
can be explained with the dimensionality of the data.

o DBSCAN usually outperfoms other cluster algorithms on
low-dimensional data.

0 MajorClust usually outperfoms other cluster algorithms on
high-dimensional data, in particular in the document
categorization field.

Current work;

How fingerprints can be utilized for efficient region queries in
high-dimensional spaces.

Stein/Busch



