Density-based Cluster Algorithms in Low-dimensional and High-dimensional Applications

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Summary

Benno Stein

Bauhaus University Weimar Web-based Information Systems Michael Busch

IBM Silicon Valley Laboratory (WebSphere II Project)

Given a set of objects (documents) $D = \{d_1, \dots, d_n\}$.

Clustering is the *unsupervised* classification of d_i into groups.

Result is a partitioning C of D.

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Given a set of objects (documents) $D = \{d_1, \ldots, d_n\}$. Clustering is the *unsupervised* classification of d_i into groups.

Result is a partitioning C of D.

Objective: Maximize intra-group similarity. Minimize inter-group similarity.

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Summary

Clustered graph

Cluster algorithms form the backbone of document categorization.

Example Alsearch [www.aisearch.de] :

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Indexing (includes parsing, stopword elimination, stemming):

(chrysler	0.12
	deal	0.2
	leav	0.1
	amc	0.01
	cat	0.0
	sal	0.01
	dog	0.0
	:	:)

e.g. under the vector space model:

Analysis

Algorithms

Cluster

Analysis

Summary

Analysis

Cluster

Summary

Analysis

Cluster

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Cluster Algorithms

Density-based Algorithms

Analysis

Cluster Algorithms

Density-based Algorithms

Analysis

Cluster Algorithms

Density-based Algorithms

Analysis

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Cluster Algorithms

Density-based Algorithms

Analysis

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Exemplar-based versus Linkage

Exemplar-based algorithms fail with large differences in size.

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Exemplar-based versus Linkage

Exemplar-based algorithms fail with entwined clusters.

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis
Exemplar-based versus Linkage

Exemplar-based algorithms fail with entwined clusters.

Summary

Analysis

Algorithms

Cluster Algorithms

Exemplar-based versus Linkage

Exemplar-based algorithms fail with entwined clusters.

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Density-based algorithms try to separate the set D into subsets of similar densities.

Density estimation can happen

- parameter-based: the underlying distribution is known
- parameter-less: histogramm, kernel function (construct barcharts, superimpose continuous functions)

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Density-based algorithms try to separate the set D into subsets of similar densities.

Density estimation can happen

- parameter-based: the underlying distribution is known
- parameter-less: histogramm, kernel function (construct barcharts, superimpose continuous functions)

Example (Carribean Isands):

ATLANTIK GOLF VON NEXIKO Kuba Cayman baseln KARIBIK Totage KARIBIK

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Density estimation with Gaussian Kernel for the example.

Introduction	ntrodu	uction
--------------	--------	--------

Cluster Algorithms

Density-based Algorithms

Analysis

Density estimation with Gaussian Kernel for the example.

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Density estimation with Gaussian Kernel for the example.

Introduction Cluster

Algorithms

Density-based Algorithms

Analysis

Density estimation with Gaussian Kernel for the example.

Density-based Algorithm: DBSCAN [Ester et al. 1996]

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Density-based Algorithm: DBSCAN [Ester et al. 1996]

 $p \text{ is core point:} |N_{\varepsilon}(p)| \ge MinPts.$

p is noise point: *p* is not density-reachable from a core point.*p* is border point: otherwise.

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

 $p \text{ is core point:} |N_{\varepsilon}(p)| \ge MinPts.$

p is noise point: *p* is not density-reachable from a core point.*p* is border point: otherwise.

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Summary

p is density-reachable from q:

(a) $p \in |N_{\varepsilon}(q)|$, where q is a corepoint

(b) transitive application of condition (a):

A cluster $C \subseteq D$ satisfies the following conditions:

1. $\forall p,q$: If $p \in C$ and q is density-reachable from p then $q \in C$.

Maximality condition

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

A cluster $C \subseteq D$ satisfies the following conditions:

1. $\forall p,q$: If $p \in C$ and q is density-reachable from p then $q \in C$.

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Summary

2. $\forall p, q : p \text{ is density-connected to } q.$

There is a point o such that both, p and q are density-reachable from o.

Overall cluster procedure:

- 1. Select unclassified point $p \in D$.
- 2. Construct ε -neighborhood $N_{\varepsilon}(p)$.
- 3. If p is a core point
 - Then Insert $N_{\varepsilon}(p)$ into new cluster C. Recursively analyze the ε -neighborhoods of $q \in N_{\varepsilon}(p)$ and insert all density-reachable points into C.

Else Classify p as noise.

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

0.....

Analysis

Cluster

Density-based

Algorithms

Cluster

Algorithms

Analysis

Cluster

Cluster

Cluster

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Definite majority decision (agglomeration):

Definite majority decision (node changes cluster):

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Definite majority decision (agglomeration):

Indefinite majority decision:

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Analysis

Analysis

Analysis

Cluster

Analysis

Cluster

Cluster

Analysis

Cluster

Cluster

Introduction

Density-based Algorithms

Analysis

Analysis

Cluster
Density-based Algorithm: MajorClust

Analysis

Cluster

Density-based Algorithm: MajorClust

Analysis

Cluster

Density-based Algorithm: MajorClust

Analysis

Geometrical Data—map of the Caribbean Islands (approx. 20,000 points) :

Geometrical Data—map of the Caribbean Islands (approx. 20,000 points) :

DBSCAN:

The problem of choosing a good ε -value in DBSCAN.

Geometrical Data—map of the Caribbean Islands (approx. 20,000 points) :

MajorClust:

The problem of a global analysis (no ε -neighborhood restriction) in MajorClust.

Analysis II (high-dimensional)

Document categorization with the Reuters corpus.

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Summary

- □ 1000 documents
- □ 10 categories: politics, culture, economics, etc.

uniformly distributed, exclusive membership

 \Box > 10,000 dimensions

Analysis II (high-dimensional)

DBSCAN requires embedding of data in low-dimensional space.

Classification results (*F*-Measure) over dimensionality:

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Analysis (runtime)

Runtime-behavior on the geometrical data:

Introduction

Cluster Algorithms

Density-based Algorithms Note:

Analysis

Summary

The embeddding of data in a low-dimensional space (MDS) is computationally very expensive:

I. e., most cluster algorithms will be faster than DBSCAN + MDS.

Analysis (runtime)

DBSCAN employes the R-tree data structure for region queries, which constructs minimum bounding regions for inserted points:

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Summary

"Existing methods are outperformed on on average by a simple sequential scan, if the number of dimensions exceeds around 10."

[Weber 99, Gionis/Indyk/Motwani 99-04]

Summary

An alternative categorization scheme :

	Cluster approach			
	hierarchical	iterative	density- based	meta-search controlled
Analysis strategy	relative comparison based on two items	absolute comparison based on k items	relative comparison based on k items	absolute comparison based on all items
Recovery characteristics	irrevocable	revocable	revocable	revocable

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Summary

Orthogonal to this scheme is the concept for similarty computation:

- □ distance (neighborhood) analysis in low-dimensional space
- □ similarity predicate in arbitrary (high-dimensional) space

Summary

The strengths and weaknesses of density-based cluster algorithms can be explained with the dimensionality of the data.

 DBSCAN usually outperfoms other cluster algorithms on low-dimensional data.

 MajorClust usually outperfoms other cluster algorithms on high-dimensional data, in particular in the document categorization field.

Introduction

Cluster Algorithms

Density-based Algorithms

Analysis

Summary

Current work:

How fingerprints can be utilized for efficient region queries in high-dimensional spaces.