

Mathias Lux, Michael Granitzer **Know-Center**

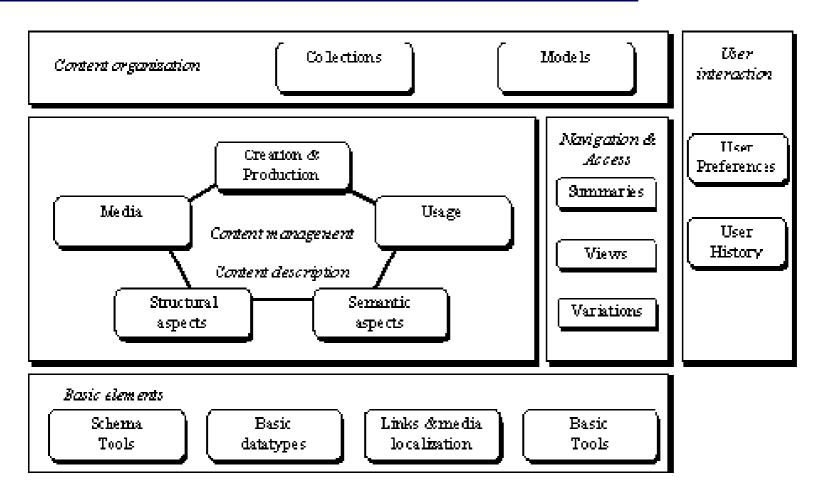

{mlux, mgrani}@know-center.at

Content

Know

- MPEG-7 and Semantic Descriptions
- Indexing & Search of Semantic Descriptions
- Implementation Details
- Evaluation
- Demonstration
- Future Work

What is MPEG-7?

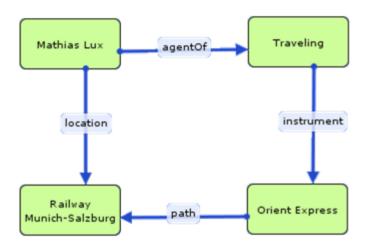


- "Multimedia Content Description Interface"
- ISO/IEC Standard for MuMe Meta Data
- Representation
 - XML as well as Compressed Binary
- Organized in Descriptors (D) and Descriptor Schemes (DS)

MPEG-7

MPEG-7 Semantic Descriptions (1/2)

Semantic DS allows Semantic Descriptions:


- Base Descriptor "SemanticBase"
- Inherited are Agents, Places, Times, Events, Concepts, Objects, ...
- D Instances are interpreted as Nodes

Instanz	Descriptor	
Mathias Lux	Semantic Agent	
Orient Express	Semantic Object	
Traveling	Semantic Event	
Railway München-Salzburg	Semantic Location	

MPEG-7 Semantic Descriptions (2/2)

- Semantic Relations interconnect Semantic Objects.
- 45 different Relations, 44 inverse.
- Relations are directed Edges interconnecting Nodes.

Properties of Semantic Descriptions

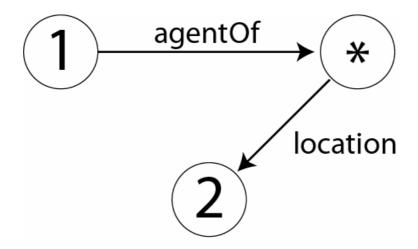
- Semantic Descriptions are "Labeled Graphs".
- Node Labels are unique.
- Number of possible Edge Labels is bounded.
- One Semantic Object Instance can be found in multiple Graphs (Domain specific).

Indexing

Indexing is needed for

- Semantic Objects (SO), which are the Nodes
 - Fulltext Index
 - Node IDs
- Semantic Descriptions (SD), which are the Graphs
 - Based on the Paths in the Graphs
 - Paths as Strings

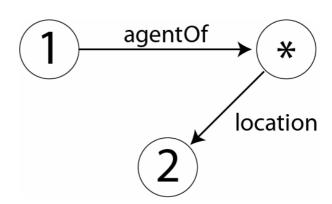
Paths in the Index


Term	Path length		
1		0	
agentOf	pat	ientOf	3
3		0	
_4		0	
_agentOf_1_1@cation		1	
_locationOf_4_2	*	1	
_patientOf_3_2		1	
1_agentOf_2_patient_3		2	
_1_agentOf_2_location_4		2	
_3_patientOf_2_location_4		2	

Constructing a Query (1/2)

Query: Mathias Lux is doing something at the I-Know

- Mathias Lux is identified as node with ID 1
- I-Know is identified as node with ID 2
- "Something" is a wildcard


10

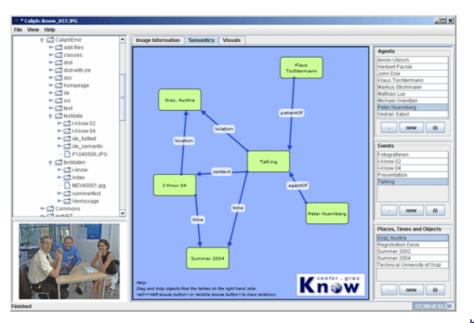
Constructing a Query (2/2)

The Query is based on the paths:

- Paths with Length 0: "_1" and "_2"
- Paths with Length 1: "_agentOf_1_*" and "_locationOf_2_*"
- Paths with Length 2: "_2_agentOf_*_location_2"

Query Interface

Creating Queries is like drawing Graphs.


- Possibe Candidates for Nodes are identified.
- With Query Expansion Query Graphs are constructed.
- From each Query Graph a Query String is constructed.
- Support for Wildcards

Implementation (1/2)

Know

Open Source Applications for Annotation and Retrieval of Digital Photos: Caliph & Emir

Caliph: Common and Light Weight Photo Annotation



Implementation (2/2)

Emir: Experimental Metadata Based I mage Retrieval

- Similar Images (CBIR)
- Keywords in Full Text Index
- Semantic Descriptions
- Visualization based on:
 - CBIR (Color, Edges)
 - Similarity of Semantic Graphs

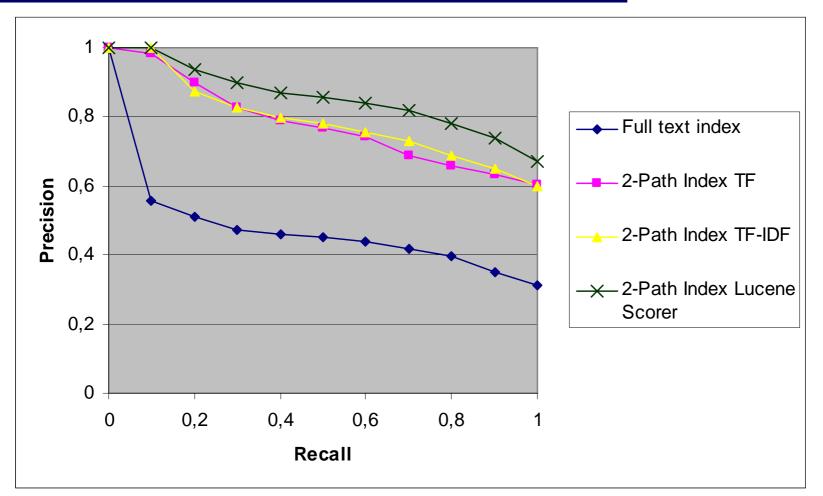
14

Evaluation

- Definition of a Test Set
 - No Standardized Test Set available
- Evaluation of Retrieval Performance compared to
 - Full Text Search
 - Different Ranking (Scoring) Algorithms
- Assumption: Maximum Common Subgraph Metric yields Optimal Results

$$similarity(G_1, G_2) = \frac{|mcs(G_1, G_2)|}{max(|G_1|, |G_2|)}$$

Test Set



- 85 different Semantic Descriptions
- Photos of I-Know Conferences in 2002 and 2004
- Each Graph from the database was taken to query the whole database, precision and recall were averaged

	Min	Max	Median
Nodes	3	11	5.5
Relations	2	12	5.6

Auswertung

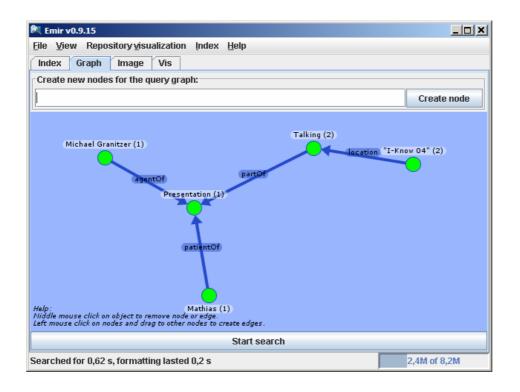
Lucene Scoring Function

$$score(q,d) = \sum_{t \in q} TF(t,d) \cdot IDF(t) \cdot b(t.field,d) \cdot INorm(t.field,d) \cdot coord(q,d) \cdot qNorm(q)$$

Lucene Scorer:

- TF ... Term Frequency
- IDF ... Inverse Document Frequency
- b ... Boost Value
- INorm ... Normalization based on Field Value Length
- qNorm ... Normalization based on Query
- coord ... Term Frequency in Query and Document

Evaluation Results



- The Path Index based Retrieval outperforms the Full Text Retrieval on this test case.
- Between classical TF*IDF implementation and the term frequency scoring function only slight differences in retrieval performance can be identified.
- We assume that the *coord(q, d)* factor is the reason for the different performance of the classical TF*IDF and the Lucene score function by reflecting the denominator of the maximum common distance metric.

Demonstration

Emir: Experimental Metadata based Image Retrieval

Future Work

- Creating an appropriate Test Set
- Advancing Clustering and MDS Algorithms
- Integration of different Similarity Metrics for Evaluation
 - Path based ST Model
 - Error Correcting Maximum Common Subgraph Metric
 - Different Path Lengths, Selection with TF*IDF
- Implementation for RDF Graphs / OWL

Thank you ...

Know

... for your attention!

Visit Caliph & Emir: http://caliph-emir.sourceforge.net