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Term-Documents matrix

Collection D = {d1, . . . , dn} of text documents.
T = {t1, . . . , tm}: set of distinct index terms in D:

A =

d1 d2 · · · dn

t1
t2
...

tm


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

... · · ·
...

am,1 am,2 · · · am,n


ai,j is a function of the weight of term ti in document dj
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TF-IDF term-weighting schemes

The value of ai,j is a function of two factors

A LOCAL FACTOR L(i , j)

measuring the relevance of term ti in document dj .
We used:

L(i , j) =
freq(i , j)

maxi∈[1,m] freq(i , j)

A GLOBAL FACTOR G(i)

to de-amplify the relative weight of terms which are very
frequently used in the collection.
We used:

G(i) = log
n
ni

ni is the number of documents containing term ti .
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Text Matching Algorithm

Input : a query vector ~q = {q1, . . . , qm}
Output : the rank vector ~r = ~q · A
A and q are sparse⇒ ~q · A can be computed very
efficiently.

If the size of the query is limited to k terms⇒ TM has cost
O(kn).

Issues
Polysemy: e.g., polo

Synonymy: e.g., automobile, car, machine
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Query expansion

QUERY EXPANSION (or QUERY REWEIGHTING)

The process aimed to alter the weights, and possibly the terms,
of a query.

Two approaches:
1 use relevance feedback
2 use some knowledge on terms relationship (thesaurus)

The term-term correlation matrix A AT gives a statistic
estimation of relationships among terms in the collection
⇒ Query expansion: ~q′ ← ~q A AT
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Similarity Thesaurus

Qiu and Frei presented an alternative approach to compute
A
Idea: compute the probability that a document is
representive of a term
They propose the following weighting scheme:

ai,j =


(0.5+0.5∗ freq(i,j)

maxj freq(i,j) )∗itf (j)rPn
l=1((0.5+0.5∗ freq(i,l)

maxl freq(i,l) )∗itf (j))2
if freq(i , j) > 0

0 otherwise

maxj freq(i , j): is the maximum frequency of term ti over all
the documents in the collection.
itfj = log m

mj
, mj the number of distinct terms in the

document dj ;
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Query expansion by Similarity Thesaurus

Algorithm

1: Compute A with the previous weighting function;

2: Compute similarity thesaurus: S ← A A
T

;
3: Given a query vector ~q:
4: ~s ← ~q S;
5: ~s′ ← ξ(~s, xr );
6: ~s′′ ← ~s′

|~q| , where |q| =
∑m

i=1 qi ;

7: ~q′ ← ~q + ~s′′;

Search quality

Use of S.T. improves Text-Matching but does not completely
resolve polysemy and synonymy.
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Latent Semantic Indexing

Idea

Use the Singular Value Decomposition to produce a low rank
approximation of A

A
 =
 U

S
 V
T
m


n
 r


m


r


r
 r


n
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LSI Search

The documents collection is represented in the reduced
k -dimensional subspace:

D = Σ−1
k UT

k A

Also the query vector is projected in the k -dimensional
subspace: qk = Σ−1

k UT
k q

The rank of i-th document is given by

ri = cos αi =
~qk · ~d i

|~qk | · |~d i |

Issue

Requires the computation of n cosines⇒ very slow, unusable
for large collections
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LS-Thesaurus

Idea

Compute the similarity matrix starting from a low rank
approximation of A (as in LSI).

We can formally define our similarity matrix Sk in the following
way:

Sk = Ak A
T
k = Uk Σk V

T
k V k Σ

T
k U

T
k = Uk Σ

2
k U

T
k

Note that U and the diagonal elements of Σ correspond
respectively to the eigenvectors and the eigenvalues of matrix

A A
T

.
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Algorithm LS-Thesaurus - Pre-Process

1: Input: a collection of documents D;
2: Output: a Similarity Thesaurus, i.e., a m ×m matrix Sk ;
3:

4: Compute the term-document matrix A from D;

5: (U,Λ)← EIGEN(A A
T
);

6: Uk ← U(1:m,1:k);
7: Λk ← Λ(1:k ,1:k);
8: Sk ← Uk Λk UT

k ;

L. Laura, U. Nanni, F. Sarracco Fast LSI-based techniques for query expansion
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Algorithm LS-Thesaurus - Expand

1: Input: a query vector ~q, a similarity thesaurus Sk ,
2: a positive integer xr ;
3: Output: a query vector ~q′;
4:

5: ~s ← ~q Sk ;
6: ~s′ ← ξ(~s, xr );
7: ~s′′ ← ~s′

|~q| , where |q| =
∑m

i=1 qi ;

8: ~q′ ← ~q + ~s′′;

L. Laura, U. Nanni, F. Sarracco Fast LSI-based techniques for query expansion
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LS-Filter

Assumptions

In LSI algorithm documents and queries are projected (and
compared) in a k -dimensional subspace

The axes of this subspace represent the k most important
concepts arising from the documents in the collection

The user query tries to catch one (or more) of these
concepts by using an appropriate set of terms

Idea
Let the system select the terms which best represent the
required concepts

L. Laura, U. Nanni, F. Sarracco Fast LSI-based techniques for query expansion
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LS-Filter - Schematic view
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3. The user inserts a query
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4. The query vector is projected in the concepts space
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LS-Filter - Schematic view
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6. Concepts vector is projected back into the terms space
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LS-Filter - Schematic view
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8. Remaining terms are added to the original query vector
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Algorithm LS-Filter - Pre-Process

1: Input: a collection of documents D;
2: Output: a pair of matrices (P, P−1);
3:

4: Compute the term-document matrix A from D;
5: (U,Σ, V )← SVD(A);
6: Uk ← U(1:m,1:k);
7: Σk ← Σ(1:k ,1:k);
8: P ← Σ−1

k UT
k ;

9: P−1 ← Uk Σk ;
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LS-Thesaurus
LS-Filter

Algorithm LS-Filter - Expand

1: Input: a query vector ~q, matrices (P, P−1),
2: two positive integers xc and xt ;
3: Output: a query vector ~q′;
4:

5: ~p ← P ~q;
6: ~p′ ← ξ(~p, xc);
7: ~p′′ ← P−1 ~p′;
8: ~q′ ← ξ(~p′′, xt);
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Algorithms

We compared the behavior of the following approaches:

TM: the simple text matching;

LS-T: text matching with queries previously expanded by
LS-Thesaurus algorithm;

LS-F: text matching with queries previously expanded by
LS-Filter algorithm;

LSI: the full LSI computation.
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Dataset

Three books from O’Reilly in html format about Perl, Unix
and Java

3000 documents (html pages)

150 short queries, with human made collection of relevant
documents

publicly available on the web at URL:
http://www.dis.uniroma1.it/~laura/

L. Laura, U. Nanni, F. Sarracco Fast LSI-based techniques for query expansion
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Retrieval effectivess
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Time performances
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Examples of LS-Filter

job control shell logout zip file
job 0.42763 shell 0.68739 file 0.71548
background 0.12985 bourne 0.11818 util 0.16258
echo 0.10754 login 0.09497 zip 0.15056
number 0.09974 perl 0.09123 checksum 0.09776
list 0.07858 prompt 0.09851
control 0.06929
ctrl 0.06882
object 0.06669
line 0.05827
filename 0.05827
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What we have done

Previous techniques:
TM: fast but prone to synonymy and polysemy
LSI: effective but slow

We introduced 2 techniques to improve TM search by
using query expansion
We compared them with TM and LSI search:

we used a non-standard mid-size dataset
generally their performances are better than TM, but not
homogeneous
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What we want to do

Further experiments on standard datasets

Exploit user relevance feedback to discriminate relevant
concepts in case of ambiguous queries

Very big data structures: can we decrease spatial cost?
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