
Proceedings

of the KI 2004 Workshop on

“Machine Learning and Interaction for Text-Based
Information Retrieval”

TIR-04

Ulm, September 21, 2004

Edited by

Benno Stein
Sven Meyer zu Eißen
Andreas Nürnberger

Contents

Preface

Further Enhancement to the Porter’s Stemming Algorithm 7
Fadi Yamout, Rana Demachkieh, Ghalia Hamdan, and Reem Sabra

Boosting for Text Classification with Semantic Features 25
Stephan Bloehdorn and Andreas Hotho

Learning Similarities for Collaborative Information Retrieval 43
Armin Hust

Experiments in Document Clustering using Cluster Specific 55
Term Weights
Christian Borgelt and Andreas Nürnberger

Wrapper Generation with Patricia Trees 69
Sven Meyer zu Eissen and Benno Stein

Information Need Assessment in Information Retrieval—Beyond 77
Lists and Queries
Frank Wissbrock

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 3

4 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Preface

Being in the age of information—so to speak: information flooding—intelligent tech-
nologies for information mining and retrieval have become an important as well as ex-
citing field of research. In this connection, methods of text-based information retrieval
receive special attention, which results from the fundamental role of written text, but
also because of the high availability of the Internet. E.g., information retrieval methods
have the potential to improve the quality of the standard keyword search; moreover,
they strike a path to the new developments from the field of the Semantic Web.

There are various techniques and methods being used for text-based information re-
trieval tasks, which stem from different research areas: machine learning algorithms,
models from computer linguistics and psychology, paradigms from the field of user
interaction and modeling, or algorithms for information visualization. The develop-
ment of powerful retrieval tools requires the combination of these developments, and
in this sense the workshop shall provide a platform that spans the different views and
approaches.

The following list gives examples from classic and ongoing research topics from the
field of text-based information retrieval: document models and similarity measures
for special retrieval tasks, automatic category formation, topic identification and auto-
abstracting, plagiarism analysis, ontologies and the Semantic Web, concepts and tech-
niques for information visualization, user modeling and interaction for particular re-
trieval tasks, evaluation and construction of test collections.

Workshop Organization

Benno Stein, University of Paderborn
Sven Meyer zu Eißen, University of Paderborn
Andreas Nürnberger, University of Magdeburg

Program Committee

Stefan Böttcher, University of Paderborn
Heiko Holzheuer, Lycos Europe, Gütersloh
Oliver Niggenann, dSPACE, Paderborn
Andreas Nürnberger, University of Magdeburg
Sven Meyer zu Eißen, University of Paderborn
Benno Stein, University of Paderborn

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 5

6 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Further Enhancement to the Porter’s Stemming Algorithm

Fadi Yamout1, Rana Demachkieh1, Ghalia Hamdan1, Reem Sabra1

1 Faculty of Computer Sciences
C&E American University I., Beirut, Lebanon

Email: fyamout@inco.com.lb

Abstract. Stemming algorithms are used to transform the words in texts into their
grammatical root form, and are mainly used to improve the Information Retrieval
System’s efficiency. Several algorithms exist with different techniques. The most
widely used is the Porter Stemming algorithm. However, it still has several
drawbacks, although many attempts were made to improve its structure. This paper
reveals the inaccuracies encountered during the stemming process and proposes the
corresponding solutions.

1. Introduction

Finding information is not the only activity that exists in an Information Retrieval
(IR) system. Indexing, for instance, refers to how information and user’s requests
from the system are represented. We will refer to the information to be indexed as
documents. Hence, documents are represented through a set of index terms or
keywords. The terms are extracted from the text of the documents. This might be done
automatically or generated by a specialist.

It was estimated in Kowalski [1] that for relatively short documents (e.g., 300-500
words) it normally takes a specialist at least five minutes per item to produce the
terms, while it takes just a few seconds on a moderate computer. The extracted terms
are mainly nouns since they describe better the semantic of the documents while
adjectives, adverbs, and connectives (including transitions, conjunctions…) are less
useful because they work mainly as complements.

These irrelevant terms are usually placed in a file called Stoplist. A Stoplist algorithm
is applied to all the documents in the collection with an objective to eliminate the
terms that have little value to the system. In addition, a word, which occurs in 80% of
the documents in the collection, is useless [2]. An example of 425 stopwords is shown
in a list in Frakes and Baeza-Yates [2]. The remaining terms are stemmed using
Porter's algorithm [3], which brings down distinct words to their grammatical root and
thus reduces further the number of unique terms.

Many attempts were made to improve the structure of the Porter algorithm [4],
however, it still has several drawbacks. In this paper, further improvements are

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 7

introduced to overcome these problems in order to enhance the stemming process. We
will refer to the existing Porter algorithm as Porter 2002 and the new as Porter 2004.

2. Porter’s Algorithm

Porter Stemming Algorithm was developed by Martin Porter at the University of
Cambridge in 1980 and was first published in Porter, M.F., [5] and reprinted in
Sparck, Karen, and Peter [6]. As described in the publication, “The Porter stemming
algorithm (or ‘Porter stemmer’) is a process for removing the commoner
morphological and inflexional endings from words in English. Its main use is as part
of a term normalization process that is usually done when setting up Information
Retrieval systems”. Since then it has been very widely used and coded in various
programming languages. It is based mainly on stemming operations that remove
suffixes from words, such as gerunds (motoring motor), plurals (cats cat), and
replacing words ending with "ator" for example with "ate" (operator oper), etc….

These operations are classified into rules where each of these rules deals with a
specific suffix and having certain condition(s) to satisfy. A given word’s suffix is
checked against each rule in a sequential manner until it matches one, and
consequently the conditions in the rule are tested on the stem that may result in a
suffix removal or modification.

3. Drawbacks of the Porter Algorithm

Natural languages are not completely regular constructs, and therefore stemmers
operating on natural words unavoidably make mistakes. For instance, words, which
are distinct, may be wrongly conflated to give similar stems (ex: design design;
designate design, etc...) and affect seriously the retrieval performance of an IR
system since the semantic of the word is expressed differently; these are known as
over-stemming errors. On the other hand, words which ought to be merged together
may remain distinct after stemming (ex: characterizes character; characteristic
characterist, etc…); these are known as under-stemming errors and do not affect the
retrieval performance of an IR system [2]. In this paper we deal with over-stemming
errors.

The modified Porter algorithm was tested on 23,5311 words provided by Porter and
compared to an already existing output provided from the same site. In addition, it
was tested on 45,000 words extracted from the Oxford’s dictionary, and the following
over-stemming errors were observed:

1 http://www.tartarus.org/~martin/PorterStemmer/index.html

8 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

http:///

Error #1:
The non-existence of “e” at the end of the words that have m=1 and begin with a
consonant, and end with two consonants; for ex: paste, loathe…:

Paste past
Past past

Error #2:
The removal of “s” in step1 from words ending with “is” such as his and appendicitis:

Appendicitis append
Append append

Error #3:
Words ending with “yed” and “ying” and having different meanings may end up with
the same stem:

Dying dy (impregnate with dye)
Dyed dy (passes away)

Error #4:
The removal of “ic” or “ical” from words having m=2 and ending with a series of
consonant, vowel, consonant, vowel, such as generic, politic…:

Political polit
Politic polit
Polite polit

Error #5:
The removal of the suffix “ative” from all words ending with it and having m=1 or
m=2, the thing that leads to serious conflicts:

Combative comb Generative gener
Comb comb General gener

Error #6:
The removal of the suffix “ness” from all words where m=1 and end with consonant,
vowel, consonant (cvc) such as witness:

Witness wit
Wit wit

Error #7:
The suffix “al” is removed from all words where m=2 e.g. admiral, animal…:

Admiral admir
Admire admir

Error #8:
The elimination of the suffix “eer” from words with m=2 such as engineer:

Engineer engin
Engine engin

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 9

Error #9:
The exclusion of the suffix “ible” from all words where m=2 starting by a consonant
and not ending with a series of consonant, vowel, consonant, vowel, such as
responsible:

Responsible respons
Response respons

Error #10:
The exclusion of the suffix “ance” from words with m=2 ending with a series of
consonant, vowel, consonant, vowel:

Severance sever
Several sever

Error #11:
The removal of the suffix “ment” from all words even those ending with “iment”
having m=2 and not ending with a series of consonant, vowel, consonant, vowel; e.g.
experiment:

Experiment experi
Experience experi

Error #12:
The elimination of “ion” from all words where m=2 and not consonant, vowel,
consonant, vowel, without replacement:

Secretion secret
Secret secret

Error #13:
The removal of the suffix “ate” or “nate” from all words where m=2 and ending with
a series of consonant, vowel, consonant, vowel:

Designate design
Design design

Error #14:
The elimination of the suffix “ize” from all words having m=2 and starting by a
consonant, and ending with a series of consonant, vowel, consonant, vowel:

Colonize colon
Colon colon

Error #15:
The exclusion of “itive” from words with m= 1 and starting by consonant, and ending
with a series of consonant, vowel, consonant, vowel:

Positive posit
Position posit

10 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Error #16:
The removal of “iti” from all words where m=2 starting by a vowel and ending with a
series of consonant, vowel, consonant, vowel:

Ameniti amen
Amen amen

The removal of “iti” from all words where m=3 starting by a vowel and not ending
with a series of consonant, vowel, consonant, vowel:

Universiti univers
Universe univers

4. Modifications

The following section describes the corresponding solutions for each of the errors
revealed previously (Table 1 describes the symbols used).

k : Pointer to the last letter in the word
m() : Counts how many consecutive vowel, consonant exist in a word
cons() : Checks whether the letter at a certain position is a consonant or not
ends() : Determines if the word ends with the variable sent and consequently
 truncates this variable from the original word
Table1: Symbol’s Intuitions

Solution #1:

To solve the problem ending with “e” a function is created to keep the “e” at the end
of the word by returning false
If m=1:
Starts with a consonant and ends with two consonants
Paste, loathe, and bottle.

While adding this method, another problem arises for the words such as beaches,
bushes…, so an additional statement is added to step1: If the word ends with “ches”
or with “shes” the program will remove the “es" since in step6 the cvd method is
used.

Beaches beach
Bushes bush

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 11

The cvd method is as follow:

 function cvd (int d)
 if cons(d) then
 d := d-1;
 if !cons(d) and d!=0 then
 while !cons(d) and d>0 do
 d := d-1;
 if cons(d) then return true;
 return false;
 return true;

Step1:
 if ends("ches") or ends("shes") then k := k-2;

Solution #2:
If the word ends with “is”, the “s” is not deleted

Appendicitis appendicitis
The statement is:

if ends("is")

Solution #3:
To prevent words ending with “ying” and “yed”, and having different meanings, from
producing the same stem, the “ying” will be set to “i” if it has m=0, starting with
consonant and vowel.

Dying di;
Dyed dy;

The statements are:

if ends("ying) then
 if m()=0 and cons(0) and !cons(1) then setto("i");

Solution #4:
Usually the words that end by “ic” in step3 or “ical” in step4 must be removed but in
other cases it must not. Therefore, if the word is of size m = 2 and consists of a series
of consonant, vowel, consonant, vowel, it is replaced by “ica*” rather than being
removed, then in step5 it is transformed to “ic”.

polite polit,
political politic,
political politic

12 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

The statements are:

Step3:
case 'i': if ends("ic") and m()=2 then
 while k > 0 do
 if cons(k) and !cons(k-1) then k := k – 2;
 else j := j + 2; k := j; break;
 if k <= 0 then r("ica*");
 break;
 else break;

Step4:
case 'l': if ends("ical") then
 if m() = 2 then
 while k > 0 do
 if cons(k) and !cons(k-1) then k := k – 2;
 else k := j + 2; r("ic"); break;
 if k <= 0 then r("ica*"); break ;
 else r("ic"); break;

Step5:
if ends ("ica*") then r ("ic"); j := j + 2; break;
else j := k; break;

Solution #5:
If the word ends by “ative” and m = 2, it is replaced by “ate”.

Generative generate
Or if it is m > 2 it is removed.

Authoritative authorit
Or if m = 1 it is replaced by “at”.

Combative combat
The statements are:

if ends("ative") then
 if m() = 2 then r("ate");
 else if m() =1 then r("at");
 else if m() > 2 then r("");

Solution #6:
If the word ends with “ness”, m = 1, and ends with consonant, vowel, and a
consonant, it is kept as it is.

Witness witness
Else it will be removed.

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 13

The statements are:

case 's': if ends("ness") then
 if m() == 1 and cvc(k-4) then break;
 else r("");
 break;
 break;

Solution #7:
If it ends by “iral” and m = 2 it is left as it is.

Admiral admiral.
Or if it ends by “al”, m = 2, and it consists of a series of consonant, vowel, consonant,
vowel, it is removed

General gener

Admiral admiral

Else if m >1 it is removed
The statements are:

case 'a': if ends("al") then
 if m() = 2 then
 if ends ("iral") then j := j + 4; break;
 p := p – 2;
 while (p > 0) do
 if cons (p) and !cons(p-1) then p := p – 2;
 else k := j; break;
 if p <= 0 then j := j + 2;
 else if m() > 1 then k := j; break;

Solution #8:

If it ends with “eer” and m = 2, then only the “r” is removed in step4 and
consequently the last “e” is removed in step6

Engineer engine
The statements are:

case 'e': if ends("er") then
 if m()=2 and ends ("eer") then j := j + 2; break;
 else break;
 return

14 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Solution #9:
If it ends with “ible”, m = 2, and starts with a consonant and not ending with a series
of consonant vowel consonant vowel, then it is kept as it is.

Responsible responsible.
Reducible reduc

Or if m> 1 it is removed.
Reprehensible reprehens

The statements are:

if ends("ible") then
 if m()=2 and cons(0) then
 p := p – 4;
 while p > 0 do
 if cons (p) and !cons (p-1) then p := p – 2;
 else j := j + 3; break;
 if p <= 0 then k := j; break;
 else k := j;
 else if m() > 1 then k := j; break;

Solution #10:
If it ends with “ance”, m = 2, and consist of a series of consonant, vowel, consonant,
vowel, therefore, it is replaced by “e”.

Severance severe,
If not, it is removed.

Importance import
The statements are:
case 'c': if ends ("ance") then
 if m() = 2 then
 p := p – 4;
 while p > 0 do
 if cons (p) and !cons(p-1) then p := p – 2;
 else k := j; break;
 if p <= 0 and cons(0) then b[j := j+1]='e'; k := j; break;
 else k := j; break;
 if m() > 1 then k := j; break;

Solution #11:
If it ends with “iment”, m = 2, and not ending with a series of consonant vowel
consonant vowel, therefore, it is left as it is.

Experiment experiment
Or if m> 1 it is removed.

Accompaniment accompani

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 15

The statements are:

if ends("iment") and m() = 2 then
 p := p - 5
 while p > 0 do
 if cons(p) and !cons(p-1) then p := p – 2;
 else break;
 if p>0 then j := j + 5; break;
if ends ("ement") then break;
if ends ("ment") then break;

Solution #12:
If it ends with “tion”, m = 2, and not ending with a series of consonant vowel
consonant vowel…, it is replaced with an “e”.

Secretion secrete
Sedition sedit

Or if m> 1 it is removed. The statements are:

if ends("ion") and j >= 0 then
 if b[j] = 't' then
 if m()= 2 then
 p := p – 3;
 while p > 0 do
 if cons (p) and !cons (p-1) then p := p – 2;
 else b[j := j+1] := 'e'; k := j; break;
 if p <= 0 then k := j; break;
 else if m() > 1 then k := j; break;

Solution #13:
If it ends with “nate” or “ate”, m = 2, and ends with a series of consonant vowel
consonant vowel…, it is not replaced.

Designate designate
Or if m> 1, then it is removed.

Collaborate collabor
Or if m = 1, then the “at” is kept

Situate situat
 Or if m = 0, then it is left as it is.

Ate ate

16 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

The statements are:
case 't': if ends("nate") and m() = 2 then
 p := p - 4
 while p > 0 do
 if cons (p) and !cons (p-1) p := p – 2;
 else k := j + 1; break;
 if p <= 0 and cons(0) then j := j + 4; break;
 else if ends("ate") then
 if m() = 2 then
 p := p - 3
 while p > 0 do
 if cons (p) and !cons(p-1) then p := p – 2;
 else k := j; break;
 if p<=0 and cons(0) then j := j + 3; break;
 else k := j; break;
 else if m() > 1 then k := j; break;
 else if m() = 1 then j := j + 2; k := j; break;
 else j := j + 3; break;

Solution #14:
If it ends with “ize”, m = 2, and starts with a consonant, and ends with a series of
consonant, vowel, consonant, vowel…, it is kept as it is:

Colonize colonize
Or if m> 1 it is removed.

Aerosolize aerosol
The statements are:

case 'z': if ends("ize") then
 if m() = 2 then
 p := p – 3;
 while p > 0 do
 if cons(p) and !cons(p-1) then p := p – 2;
 else k := j; break;
 if p <= 0 and cons(0) then
 j := j + 3; break;
 else k := j; break;
 else if m() > 1 then k := j; break;

Solution #15:
If it ends with “itive”, m = 1, starts with a consonant, and ends with a series of
consonant, vowel, consonant, vowel…, it is kept as it is:

Positive positive
Or if m> 1 it is removed.

Acquisitive acquisit

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 17

The statements are:

case ‘v': if ends("itive") and m() = 1 and cons(0) Then
 p := p – 5;
 while p > 0 do
 if cons(p) and !cons(p-1) then p := p – 2;
 else j := j + 2; k := j; break;
 if p <= 0 and cons(0) then j := j + 5; break;
 else k := j; break;
 else if ends("ive") break;
return;

Solution #16:
If it ends with “iti”, m = 2, starts with a vowel, and ends with a series of consonant,
vowel, consonant, vowel…, it is kept as it is:

amenity ameniti
If it ends with “iti”, m = 3, starts with a vowel, and ends with a series of consonant,
vowel, consonant, vowel…, it is kept as it is:

Universiti universiti
Or if m> 1 it is removed

Minority minor

The statements are:

if ends ("iti") then
 if m() = 2 then
 p := p – 3;
 while p > 0 do
 if cons (p) and !cons(p-1) then p := p – 2;
 else k := j; break;
 if p <= 0 and !cons(0) then j := j + 3; break;
 else k := j; break;
 else if m() = 3 and !cons(0) then
 p := p - 3
 while p > 0 do
 if cons(p) and !cons (p-1) then p := p – 2;
 else j := j + 3; break;
 if p <= 0 and !cons(0) then k := j; break;
 else k := j; break;
 else if m() > 1 then k := j; break;

Exceptions:
Some of the words are considered as exception to the previously described rules, and
therefore are treated separately. The following step contains the words that must keep
their “e” while removing the “ing” or the “ed”.

Loathing loathe
Pasted paste

18 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

function step0()
 String s1=new String(b);
 String s2=new String("rang secret loath past us butt");
 if s2.regionMatches(s2.indexOf(b[0]),s1,0,j+1) then
 return true;
 else return false;

5. Experiments

The previously described solutions produce different results than the existing Porter
algorithm. Outputs from both Porter 2002 and 2004 are put alongside in Appendix to
demonstrate the dissimilarities.

The two techniques were tested against CISI [7], which is a standards test collection
that contains 1460 documents, in an attempt to move more relevant documents (the
ones found in the queries’ relevance judgments) further up the ranking. The result
showed a slight improvement (1.5%) in precision and recall, however for some
queries the improvement was 2.5%. The percentage is computed as an average for the
precision and recall produced by the 30 queries that come with the collection. The
results are illustrated in Figure 1 using the 11-point average curve.

CISI Test Collection
Precision

Figure 1: 11 point Average Curve

0
0.1
0.2
0.3

0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.2 0.9 1 0 0.3 0.4 0.5 0.6 0.7 0.8
Recall

Porter 2002 Porter 2004

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 19

References

1. Kowalski G. (1997) “Information Retrieval Systems: Theory and Implementation”, Kluwer

Academic Publisher, 1997. id387

2. Baeza-Yates R. and Ribeiro-Neto B. (1999) “Modern Information Retrieval”. New York:

Addison Wesley

3. Frakes W. B. and Baeza-Yates R. (1992) “Information Retrieval: Data Structures and

Algorithms”. Englewood Cliffs, NJ: Prentice-Hall. id175

4. Porter, M.F., (2002) “Developing the English Stemmer”, http://snowball.tartarus.org/.

5. Porter, M.F., (1980), “An Algorithm for Suffix Stripping”, Program, 14(3) :130-137.

6. Sparck Jones, Karen, and Peter Willet, (1997), “Readings in Information Retrieval”, San

Francisco: Morgan Kaufmann, ISBN 1-55860-454-4.

7. CISI-collection. The CISI reference collection for information retrieval. 1460 documents and

30 queries, http://local.dcs.gla.ac.uk/idom/ir_resources/test-collections/cisi/, 1981

20 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

http://snowball.tartarus.org/

Appendix: Dissimilarities between existing and new algorithm

Word Porter02 Porter04 Word Porter02 Porter04 Word Porter02 Porter04
abl abl abl bath bath bath elles ell elle
able abl able bathed bath bath engine engin engin
ach ach ach bathing bath bath engines engin engin
ached ach ach baths bath bath engineer engin engine
aches ach ach bathe bath bathe engineering engin engine
aching ach ach bathes bath bathe even even even
ache ach ache bell bell bell evening even even
ad ad ad belled bell bell evenly even even
add add add belling bell bell evenness even even
added ad add bells bell bell evenings even evening
adding ad add belle bell belle fill fill fill
adds add add bonn bonn bonn filled fill fill
abl abl abl bonne bonn bonne filling fill fill
able abl able born born born fills fill fill
ach ach ach borne born borne fille fill fille
ached ach ach brown brown brown fort fort fort
aches ach ach browning brown brown forts fort fort
aching ach ach browns brown brown forte fort forte
ache ach ache browne brown browne forty forti forti
ad ad ad bush bush bush fortis forti fortis
add add add bushes bush bush front front front
added ad add bushe bush bushe fronted front front
adding ad add call call call fronting front front
adds add add called call call fronts front front
admirable admir admir calling call call fronte front fronte
admirably admir admir calls call call funeral funer funeral
admiration admir admir calle call calle funerals funer funeral
admire admir admir cloth cloth cloth funereal funer funere
admired admir admir clothed cloth cloth futur futur futur
admirer admir admir clothing cloth cloth future futur future
admirers admir admir cloths cloth cloth futures futur future
admires admir admir clothe cloth clothe gang gang gang
admiring admir admir clothes cloth clothe ganging gang gang
admiringly admir admir cross cross cross gangs gang gang
admiral admir admiral crossed cross cross ganges gang gange
amen amen amen crosses cross cross generous generous gener
amenable amen amen crossing cross cross generousness (none) gener
amenities (none) amen crosse cross crosse generously generous gener
amenity (none) amen dank dank dank general general general
and and and danke dank danke generalities general general
ande and ande design design design generality general general
andes andes ande designed design design generalization general general
animate anim anim designer design design generally general general
animated anim anim designing design design generality (none) general
animates anim anim designs design design generalizations (none) general
animating anim anim designates design designat generalize (none) general
animation anim anim designation design designat generalized (none) general
animal anim animal ear ear ear generalizer (none) general
animalized anim animal eared ear ear generalizers (none) general
animals anim animal earings ear earing generalizes (none) general
Ann ann ann ell ell ell generalizing (none) general
anne ann anne elle ell elle generals general general

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 21

Word Porter02 Porter04 Word Porter02 Porter04 Word Porter02 Porter04
generate generat generat mont mont mont responsibilities respons responsibl
generated generat generat monte mont monte responsibility respons responsibl
generation generat generat montes mont monte responsible respons responsibl
generates (none) generat numerous numer numer responsive respons respons
generating (none) generat numerical numer numeric roll roll roll
generative (none) generat of of of rolle roll rolle
generator (none) generat off off off rolled roll roll
generators (none) generat offing of off rolling roll roll
generations generat generat offe off offe rollings roll rolling
generic generic generic past past past rolls roll roll
generically (none) generic pasted past paste round round round
goeth Goeth goeth moral moral moral rounde round rounde
goethe goeth goethe morality moral moral rounded round round
grande grand grande moralities moral moral rounding round round
grandee grande grande morale moral morale roundly round round
grandees grande grande morally moral moral roundness round round
hand hand hand morals moral moral rounds round round
handed hand hand petulance petul petule relax relax relax
handful hand hand petulant petul petul relaxe relax relaxe
handfuls hand hand petulantly petul petul relaxes relax relaxe
handing hand hand petulance petul petule remain remain remain
hands hand hand petulant petul petul remaine remain remaine
hande hand hande petulantly petul petul singeing sing singe
hast hast hast picture pictur picture singing sing sing
haste hast haste pictured pictur pictur sings sing sing
her her her pictures pictur picture scienc scienc scienc
hers her her picturing pictur pictur science scienc science
herrings her herring pierce pierc pierce sciences scienc science
hing hing hing pierced pierc pierc secrete secret secrete
hinges hing hinge pierces pierc pierce secreted secret secrete
host host host piercing pierc pierc secretes secret secrete
hosts host host piercingly pierc pierc secreting secret secrete
hoste host hoste position posit posit secretion secret secrete
however howev howev positions posit posit secretly secret secret
howeve howev howeve positive posit positiv secrets secret secret
iron iron iron positively posit positiv sever sever sever
ironed iron iron positiveness posit positiv severa severa severa
ironing iron iron private privat privat several sever several
irons iron iron privateer privat private severally sever several
irony ironi ironi privately privat privat severe sever severe
ironical iron ironic privation privat privat severed sever sever
ironically iron ironic privations privat privat severely sever severe
later later later proceed proceed proce severer sever sever
lateral later lateral proceeds proce proceed severity sever sever
laterally later lateral rang rang rang sooth sooth sooth
loath loath loath range rang range soothe sooth soothe
loathe loath loathe ranged rang range soothed sooth sooth
loathed loath loathe rangees range range soothing sooth sooth
loathing loath loathe ranges rang range soothingly sooth sooth
lungs lung lung ranging rang range start start start
lunge lung lunge regal regal regal starte start starte
missy missi missi regale regal regale started start start
missis missi missis regaled regal regal starting start start
mond mond mond regaling regal regal startings start starting
monde mond monde response respons respons starts start start

22 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Word Porter02 Porter04 Word Porter02 Porter04 Word Porter02 Porter04
stern stern stern sternness stern stern witnesses wit witness
sterne stern sterne wit wit wit witnessing wit witness
sternly stern stern witness wit witness wits wit wit
 witnessed wit witness witted wit wit

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 23

24 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 25

26 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 27

28 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 29

30 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 31

32 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 33

34 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 35

36 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 37

38 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 39

40 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 41

42 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 43

44 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 45

46 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 47

48 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 49

50 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 51

52 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 53

54 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Experiments in Document Clustering using
Cluster Specific Term Weights

Christian Borgelt and Andreas Nürnberger

Dept. of Knowledge Processing and Language Engineering
Otto-von-Guericke-University of Magdeburg

Universitätsplatz 2, D-39106 Magdeburg, Germany
{borgelt,nuernb}@iws.cs.uni-magdeburg.de

Abstract. We study methods to initialize or bias different clustering
methods using prior information about the “importance” of a keyword
w.r.t. to the specific clusters. These studies give us hints on how to
initialize clustering methods in order to improve the clustering perfor-
mance if prior knowledge is available. This can be especially useful if a
user-specific clustering of a document collection or web search result set
is desired.

1 Introduction

The problem of finding descriptive weights for terms in document collections in
order to improve retrieval performance has been studied extensively in the past
(see, for instance, [12, 24, 23]). To achieve an improved classification or clustering
performance for a given text collection, it is usually necessary to select a subset
of all describing features (i.e. keywords) and/or to re-weight the features w.r.t.
a specific classification or clustering goal. Consequently, several studies were
conducted in this direction. For example, it was explored how to select keywords
based on statistical and information theoretical measures [9, 21, 28] or how to
combine clustering and keyword weighting techniques [10] in order to improve
the clustering performance.

In prior work we studied different hard and fuzzy clustering methods with and
without variances [5]. These experiments indicated that the use of variances—
which can be considered as a method for cluster specific keyword weighting—
can improve the clustering performance. Nevertheless, it is still unclear to what
extent term re-weighting influences the clustering performance and whether
initial—global or cluster specific—term re-weighting can be used to bias or im-
prove the performance. Therefore, in the following, we compare clustering with
and without term re-weighting techniques using different hard and fuzzy clus-
tering methods.

This paper is organized as follows: In Section 2 we briefly review some basics
of fuzzy clustering and a fuzzified version of learning vector quantization. In
Section 3 we review pre-processing methods for documents and in particular
the vector space model, which we use to represent documents. In Section 4 we

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 55

present our experimental results of clustering web page collections using different
global and cluster-specific term weighting approaches and finally, in Section 5,
we draw conclusions from our discussion.

2 Clustering

The best-known classical prototype based hard clustering methods are c-means
clustering [7, 4] and learning vector quantization [17, 18]. In the following, we
briefly describe their generalizations to fuzzy clustering and fuzzified learning
vector quantization as we use it in our experiments. For a more detailed discus-
sion and evaluation of these methods for document clustering see [5].

2.1 Fuzzy Clustering

While most classical clustering algorithms assign each datum to exactly one
cluster, thus forming a crisp partition of the given data, fuzzy clustering allows
for degrees of membership, to which a datum belongs to different clusters [1, 2, 14].
Most fuzzy clustering algorithms are objective function based: they determine
an optimal (fuzzy) partition of a given data set X = {xj | j = 1, . . . , n} into
c clusters by minimizing an objective function

J(X,U,C) =
c∑

i=1

n∑
j=1

uw
ijd

2
ij

subject to the constraints

∀i; 1 ≤ i ≤ c :
n∑

j=1

uij > 0, and ∀j; 1 ≤ j ≤ n :
c∑

i=1

uij = 1,

where uij ∈ [0, 1] is the membership degree of datum xj to cluster i and dij is the
distance between datum xj and cluster i. The c × n matrix U = (uij) is called
the fuzzy partition matrix and C describes the set of clusters by stating location
parameters (i.e. the cluster center) and maybe size and shape parameters for each
cluster. The parameter w, w > 1, is called the fuzzifier or weighting exponent.
It determines the “fuzziness” of the classification: with higher values for w the
boundaries between the clusters become softer, with lower values they get harder.
Usually w = 2 is chosen. Hard clustering results in the limit for w → 1. However,
a hard assignment may also be determined from a fuzzy result by assigning each
data point to the cluster to which it has the highest degree of membership.

Since the objective function J cannot be minimized directly, an iterative
algorithm is used, which alternately optimizes the membership degrees and the
cluster parameters [1, 2, 14]. That is, first the membership degrees are optimized
for fixed cluster parameters, then the cluster parameters are optimized for fixed
membership degrees. The main advantage of this scheme is that in each of the
two steps the optimum can be computed directly. By iterating the two steps

56 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

the joint optimum is approached (although, of course, it cannot be guaranteed
that the global optimum will be reached—the algorithm may get stuck in a
local minimum of the objective function J). The update formulae are derived by
simply setting the derivative of the objective function J w.r.t. the parameters
to optimize equal to zero (necessary condition for a minimum).

Depending on the distance measure used, several different fuzzy clustering
algorithms can be distinguished. Classical fuzzy c-means clustering employs the
Euclidean distance, while Gustafson-Kessel algorithm [13] uses the Mahalanobis
distance and the fuzzy maximum likelihood estimation (FMLE) algorithm [11] is
based on the assumption that the data was sampled from a mixture of c multi-
variate normal distributions as in the statistical approach of mixture models [8,
3]. It is worth noting that of both the Gustafson-Kessel as well as the FMLE al-
gorithm there exist so-called axes-parallel versions, which restrict the covariance
matrices to diagonal matrices and thus allow only axes-parallel ellipsoids [15].
These variants have certain advantages w.r.t. robustness and execution time.

2.2 Learning Vector Quantization

Learning vector quantization [17, 18], in its classical form, is a competitive learn-
ing algorithm that has been developed in the area of artificial neural networks
and that can be applied to classified as well as unclassified data. Here we con-
fine ourselves to unclassified data, where the algorithm consists in iteratively
updating a set of c so-called reference vectors µi, i = 1, . . . , c, each of which
is represented by a neuron. For each data point xj , j = 1, . . . , n, the closest
reference vector (the so-called “winner neuron”) is determined and then this
reference vector (and only this vector) is updated according to

µ
(new)
i = µ

(old)
i + η1

(
xj − µ

(old)
i

)
, (1)

where η1 is a learning rate. This learning rate usually decreases with time in
order to avoid oscillations and to enforce the convergence of the algorithm.

Membership degrees can be introduced into this basic algorithm in two dif-
ferent ways. In the first place, one may employ an activation function for the
neurons, for which a radial function like the

Cauchy function f(r) =
1

1 + r2
or the Gaussian function f(r) = e−

1
2 r2

may be chosen, where r is the (radial) distance from the reference vector. In this
case all reference vectors are updated for each data point, with the update being
weighted with the value of the activation function. However, this scheme, which is
closely related to possibilistic fuzzy clustering [19], usually leads to unsatisfactory
results, since there is no dependence between the clusters, so that they tend to
end up at the center of gravity of all data points. This corresponds to the fact
that in possibilistic fuzzy clustering the objective function is truly minimized
only if all cluster centers are identical [27]. Useful results are obtained only if
the method gets stuck in a local minimum, which is an undesirable situation.

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 57

An alternative is to rely on a normalization scheme as in probabilistic fuzzy
clustering, that is, to compute the weight for the update of a reference vector
as the relative inverse (squared) distance from this vector, or as the relative
activation of a neuron. This is the approach we employ here.

Furthermore we associate with each neuron not only a reference vector µi,
but also a covariance matrix Σi, which describes the shape and (if we do not
require it to be normalized to determinant 1) the size of the represented cluster.
A derivation of the update rule for this covariance matrix can be found in [5]. It
should be noted that versions of this algorithm that require the covariance matrix
to be normalized to determinant 1 or restrict the covariance matrix to a diagonal
matrix may be considered, too. Such constraints can improve the robustness or
the execution time of the algorithm. Finally it should be noted that the updates
may be executed in batch mode, aggregating the changes resulting from the data
points and actually updating the reference vectors and covariance matrices only
at the end of an epoch.

3 Clustering Document Collections

To be able to cluster text document collections with the methods discussed
above, we have to map the text files to numerical feature vectors. Therefore,
we first applied standard preprocessing methods, i.e., stopword filtering and
stemming (using the Porter Stemmer [22]), encoded each document using the
vector space model [23] and finally selected a subset of terms as features for the
clustering process as briefly described in the following.

3.1 The Vector Space Model

The vector space model represents text documents as vectors in an m-dimen-
sional space, i.e., each document j is described by a numerical feature vector xj =
(xj1, . . . , xjm). Each element of the vector represents a word of the document
collection, i.e., the size of the vector is defined by the number of words of the
complete document collection.

For a given document j the so-called weight xjk defines the importance of the
word k in this document with respect to the given document collection C. Large
weights are assigned to terms that are frequent in relevant documents but rare in
the whole document collection [24]. Thus a weight xjk for a term k in document j
is computed as the term frequency tfjk times the inverse document frequency
idfk, which describes the term specificity within the document collection.

In [25] a weighting scheme was proposed that has meanwhile proven its usabil-
ity in practice. Besides term frequency and inverse document frequency (defined
as idfk = log(n/nk)), a length normalization factor is used to ensure that all
documents have equal chances of being retrieved independent of their lengths:

xjk =
tfjk log n

nk√∑m
l=1

(
tfjl log n

nl

)2
, (2)

58 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

where n is the size of the document collection C, nk the number of documents
in C that contain term k, and m the number of terms that are considered.

Based on a weighting scheme a document j is described by an m-dimensional
vector xj = (xj1, . . . , xjm) of term weights and the similarity S of two documents
(or the similarity of a document and a query vector) can be computed based on
the inner product of the vectors (by which—if we assume normalized vectors—
the cosine between the two document vectors is computed), i.e.

S(xj , xk) =
m∑

l=1

xjl · xkl. (3)

For a more detailed discussion of the vector space model and weighting schemes
see, for instance, [12, 24, 23].

Note that for normalized vectors the scalar product is not much different in
behavior from the Euclidean distance, since for two vectors x and y it is

cosϕ =
xy

|x| · |y| = 1 − 1
2

d2

(
x

|x| ,
y

|y|

)
.

Although the scalar product is faster to compute, it enforces spherical clusters.
Therefore we rely on the Mahalanobis distance in our approach.

3.2 Index Term Selection

To reduce the number of words in the vector description we applied a simple
method for keyword selection by extracting keywords based on their entropy. In
the approach discussed in [16], for each word k in the vocabulary the entropy as
defined by [20] was computed:

Wk = 1 +
1

log2 n

n∑
j=1

pjk log2 pjk with pjk =
tfjk∑n
l=1 tf lk

, (4)

where tfjk is the frequency of word k in document j, and n is the number of
documents in the collection. Here the entropy gives a measure how well a word is
suited to separate documents by keyword search. For instance, words that occur
in many documents will have low entropy. The entropy can be seen as a measure
of the importance of a word in the given domain context. As index words a
number of words that have a high entropy relative to their overall frequency
have been chosen, i.e. of words occurring equally often those with the higher
entropy can be preferred. Empirically this procedure has been found to yield a
set of relevant words that are suited to serve as index terms [16].

However, in order to obtain a fixed number of index terms that appropriately
cover the documents, we applied a greedy strategy: from the first document in
the collection select the term with the highest relative entropy as an index term.
Then mark this document and all other documents containing this term. From
the first of the remaining unmarked documents select again the term with the

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 59

Label Dataset Category Associated Theme

A Commercial Banks Banking & Finance
B Building Societies Banking & Finance
C Insurance Agencies Banking & Finance
D Java Programming Lang.
E C / C++ Programming Lang.
F Visual Basic Programming Lang.
G Astronomy Science
H Biology Science
I Soccer Sport
J Motor Racing Sport
K Sport Sport

Table 1. Categories and Themes of the used benchmark data set of web pages.

highest relative entropy as an index term. Then mark again this document and
all other documents containing this term. Repeat this process until all docu-
ments are marked, then unmark them all and start again. The process can be
terminated when the desired number of index terms have been selected.

4 Experiments

For our experimental studies we chose the collection of web page documents used
in [26].1 The data set consists of 11,000 web pages classified into 11 equally-
sized categories each containing 1,000 web documents. To each category one of
four distinct themes, namely Banking and Finance, Programming Languages,
Science, and Sport was assigned as shown in Table 1.

In the following we present results we obtained using the preprocessing strate-
gies described above. After stemming and stop word filtering we obtained 163,860
words. This set was further reduced by removing terms that are shorter than
4 characters and that occur less then 15 times or more than 11, 000/12 ≈ 917
times in the whole collection. In this way we made sure that no words that per-
fectly separate one class from another are used in the describing vectors. From
the remaining 10626 words we selected 400 words by applying the greedy index-
term selection approach described in Section 3.2. For our clustering experiments
we selected finally subsets of the 50, 100, 150, ..., 350, 400 most frequent words
in the subset to be clustered. Based on these words we determined vector space
descriptions for each document (see Section 3.1, Equation (2)) that we used in
our clustering experiments. All vectors were normalized to unit length (after the
subset selection).

To assess the clustering performance using term re-weighting techniques, we
computed the performance on the same data sets used in our previous experi-
1 This collection is available for download at

http://www.pedal.rdg.ac.uk/banksearchdataset

60 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

ments [5], i.e., we clustered the union of the dissimilar data sets A and I, and the
semantically more similar data sets B and C. In a third experiment we used all
classes and tried to find clusters describing the four main themes, i.e., banking,
programming languages, science, and sport.

For our experiments we used c-means, fuzzy clustering and learning vector
quantization methods. The learning vector quantization algorithm updated the
cluster parameters once for every 100 documents. 2

A detailed discussion of the performance of these methods with and with-
out cluster centers normalized to unit length, with and without variances (i.e.,
spherical clusters and axes-parallel ellipsoids—diagonal covariance matrices—of
equal size), and with the inverse squared distance or the Gaussian function for
the activation / membership degrees can be found in [5]. Here, however, we focus
on term re-weighting aspects.

4.1 Clustering using Variances

Our prior experiments in document clustering [5] indicated that the use of
variances—which can be seen as a method for cluster specific keyword weighting
—can sometimes improve the clustering performance and stability. However, in
our first studies we restricted ourselves to analyze the performance using mean
performances and variances. As a consequence, the causes for the differences in
the performance remained somewhat unclear. Therefore we repeated several of
the experiments and present in Figures 2 to 3 the results obtained with cluster
centers normalized to length 1 with and without variances for hard c-means,
fuzzy c-means and (fuzzified) learning vector quantization. All results represent
the values of ten runs, which differed in the initial cluster positions and the
order in which documents were processed. For the experiments with variances
we restricted the maximum ratio of the variances to 1.22 : 1 = 1.44 : 1, which
seemed to yield the best results over all three clustering experiments.

The dotted lines show the default accuracy (obtained if all documents are
assigned to the majority class). The grey horizontal lines in each block, which are
also marked by diamonds to make them more easily visible, show the average
classification accuracy (computed from a confusion matrix by permuting the
columns so that the minimum number of errors results) in percent (left axis),
while the black crosses indicate the performance single experiments. The grey
dots and lines close to the bottom show the average execution times in seconds
(right axis), while the smaller grey dots and lines at the top of each diagram
show the performance of a Näıve Bayes Classifier trained with the corresponding
subset of words. The Näıve Bayes Classifier can be considered as an upper limit,
while the default accuracy is a lower baseline.

For all data sets the clustering process for fuzzy c-means and (fuzzified)
learning vector quantization is much more stable than c-means. However, all
2 All experiments were carried out with a program written in C and compiled with

gcc 3.3.3 on a Pentium 4C 2.6GHz system with 1GB of main memory running
S.u.S.E. Linux 9.1. The program and its sources can be downloaded free of charge
at http://fuzzy.cs.uni-magdeburg.de/˜borgelt/cluster.html.

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 61

methods seem to switch between two strong local minima for the semantically
similar data sets B and C.

The introduction of variances increases the performance of fuzzy c-means
in all cases. However, the performance for c-means is only improved for the
two class problem with data sets A and I and the four class problem, while
the performance of (fuzzified) learning vector quantization is improved for the
semantically more similar data sets B and C and the four class problem.

4.2 Keyword Weighting by Information Gain

Information gain (also known as mutual (Shannon) information or (Shannon)
cross entropy), which is frequently used in decision tree learning, measures the
average or expected entropy reduction resulting from finding out the value of a
specific attribute. In text categorization information gain can be used to measure
how well a term can be used to categorize a document, i.e., it measures the
entropy reduction based on this specific term.

The information gain of a term tk for a given set of r classes ci is defined as:

Igain(tk) = −
r∑

i=1

P (ci) log2 P (ci) (5)

+P (tk)
r∑

i=1

P (ci|tk) log2 P (ci|tk)

+P (tk)
r∑

i=1

P (ci|tk) log2 P (ci|tk)

The information gain values are then either used to re-weight the terms of each
document or to initialize the cluster-specific variances (see below).

4.3 Re-Scaling the Document Space

In order to study the effects of keyword weighting, we computed the “impor-
tance” of each keyword for the classification of a document based on the infor-
mation gain (see above). These “importance” values are then used to re-weight
the terms in each document by computing

x∗
jk = xjk · (Igain(tk) + o) (6)

and then re-normalizing the document vectors to unit length, resulting in a re-
scaling of the document space with respect to the importance of a keyword.

The offset o in the above formula was computed as

o =
maxtk∈T Igain(tk) − r · mintk∈T Igain(tk)

r − 1
,

where r is a user-specified maximum ratio of the scaling factors for different
terms and T is the current set of index terms. From several experiments we

62 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

conducted it seems that values of r must be small (close to 1) in order not to
spoil the performance completely. Here we chose r = 1.5.

The results of these experiments are shown in the top rows of Figures 4 to 6.
As can be seen, no gains result in any of the cases. The accuracy rather deterio-
rates slightly, an effect that gets stronger with higher values of r as we observed
in other experiments. Hence we can conclude that re-scaling the document space
in the way described does not lead to an improved performance.

4.4 Cluster Specific Keyword Weights

Instead of using the information gain to re-scale the document space one may
also add shape parameters (i.e., (co)variances) to the cluster prototypes, which
are initialized according to the “importance” of a term. This has the advantage
that term weights can be cluster specific, since each cluster may use a different
set of variances.

To evaluate this approach, we proceeded as follows: in a first step we clustered
the documents with randomly chosen starting points and without variances.
Afterwards, the best matching classes are automatically assigned by evaluating
the confusion matrix of the classification result obtained with the learned clusters
and the correct document classes.

Then the cluster prototypes were enhanced with cluster-specific variances
computed as the product of the term frequency in the class and the information
gain of the term w.r.t. a separation of the class assigned to the cluster from all
other classes. In order to keep the cluster shapes close to spherical, we restricted
the maximum ratio of the variances to 1.22 : 1 = 1.44 : 1 (cf. Section 4.1. Other
values for this maximum ratio (higher as well as lower) led to worse results.
Especially larger values considerably worsened the performance.

Finally, in a second clustering run, these enhanced cluster prototypes were op-
timized without changing the variances (only the cluster centers were adapted).

The results of these experiments are shown in the bottom rows of Figures 4
to 6. As can be seen, the cluster-specific variances stabilize the results for the
four cluster problem and—though only very slightly—improve the performance
for the two cluster problems. Thus we can conclude that cluster-specific variance
may provide some means for term weighting. However, the approach seems to be
very sensitive to the parameter settings. Furthermore, the computational costs
are very high.

4.5 Choosing Initial Cluster Centers

As we mentioned in Section 4.1 all clustering methods seem to switch between
local minima depending on the initial cluster centers choosen—which is in fact a
well known clustering problem, especially for the less robust c-means algorithm,
which is prone to get stuck in local optima easily. Therefore we studied a quite
simple initialization approach: for each class we sorted the index terms w.r.t. the
product of the term frequency in the class and the information gain of the term

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 63

c-means fuzzy c-means vector quantization
100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

Fig. 1. Classification accuracy over number of keywords on commercial banks versus
soccer (top row: standard, bottom row: with adaptable variances).

c-means fuzzy c-means vector quantization
100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

Fig. 2. Classification accuracy on building companies versus insurance agencies (top
row: standard, bottom row: with adaptable variances).

c-means fuzzy c-means vector quantization
100

80

60

40

20

0 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

0 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

0 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

0 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

0 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

0 100 200 300 400

20

16

12

8

4

0

Fig. 3. Classification accuracy on major themes (four clusters; top row: standard, bot-
tom row: with adaptable variances).

64 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

c-means fuzzy c-means vector quantization
100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

Fig. 4. Classification accuracy on commercial banks versus soccer (top row: document
space re-scaled, bottom row: fixed cluster specific variances).

c-means fuzzy c-means vector quantization
100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

Fig. 5. Classification accuracy on building companies versus insurance agencies (top
row: document space re-scaled, bottom row: fixed cluster specific variances).

c-means fuzzy c-means vector quantization
100

80

60

40

20

0 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

0 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

0 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

0 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

0 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

0 100 200 300 400

20

16

12

8

4

0

Fig. 6. Classification accuracy on major themes (top row: document space re-scaled,
bottom row: fixed cluster specific variances).

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 65

w.r.t. a separation of the class from all other classes (cf. Section 4.4). Then we
selected the first k words in these lists and initialized the cluster center using the
same value for each selected word and zero for all others, finally normalizing the
vector to unit length. Even for fairly small values of k (i.e. few selected words),
this initialization results in a very stable clustering performance. Thus—similar
to the idea of weight initialization in order to bias the clustering process—known
describing keywords can be used in order to initialize the clustering process.
In this way unwanted local minima may be avoided and the results may be
stabilized.

5 Conclusions

Our experiments show that including prior information about the “importance”
or “goodness” of a keyword for a desired class or cluster can, in principle, improve
the clustering performance. However, it is fairly difficult to find a good way of
scaling the documents or enhancing the cluster prototypes in an appropriate way.
Scaling the document space does not yield any improvement at all. On the other
hand, cluster-specific variances derived from the “importance” of index terms can
slightly improve and stabilize the clustering performance. However, the gains are
marginal and the approaches seem to be fairly sensitive to parameter settings.

References

1. J.C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, New York, NY, USA 1981

2. J.C. Bezdek, J. Keller, R. Krishnapuram, and N. Pal. Fuzzy Models and Algorithms
for Pattern Recognition and Image Processing. Kluwer, Dordrecht, Netherlands
1999

3. J. Bilmes. A Gentle Tutorial on the EM Algorithm and Its Application to Param-
eter Estimation for Gaussian Mixture and Hidden Markov Models. University of
Berkeley, Tech. Rep. ICSI-TR-97-021, 1997

4. H.H. Bock. Automatische Klassifikation. Vandenhoeck & Ruprecht, Göttingen,
Germany 1974

5. C. Borgelt and A. Nürnberger. Fast Fuzzy Clustering of Web Page Collections.
Proc. PKDD Workshop on Statistical Approaches for Web Mining (SAWM, Pisa,
Italy). 2004 (to appear).

6. A.P. Dempster, N. Laird, and D. Rubin. Maximum Likelihood from Incomplete
Data via the EM Algorithm. Journal of the Royal Statistical Society (Series B)
39:1–38. Blackwell, Oxford, United Kingdom 1977

7. R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. J. Wiley &
Sons, New York, NY, USA 1973

8. B.S. Everitt and D.J. Hand. Finite Mixture Distributions. Chapman & Hall,
London, UK 1981

9. G. Forman. An Extensive Empirical Study of Feature Selection Metrics for Text
Classification. Journal of Machine Learning Research 3:1289-1305, 2003

10. H. Frigui and O. Nasraoui. Simultaneaous Clustering and Dynamic Keyword
Weighting for Text Douments. M.W. Berry, ed. Survey of Text Mining, 45–72.
Springer, New York, NY USA 2003

66 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

11. I. Gath and A.B. Geva. Unsupervised Optimal Fuzzy Clustering. IEEE Trans.
Pattern Analysis & Machine Intelligence 11:773–781. IEEE Press, Piscataway, NJ,
USA, 1989

12. W.R. Greiff. A Theory of Term Weighting Based on Exploratory Data Analysis.
Proc. 21st Ann. Int. Conf. on Research and Development in Information Retrieval
(Sydney, Australia), 17–19. ACM Press, New York, NY, USA 1998

13. E.E. Gustafson and W.C. Kessel. Fuzzy Clustering with a Fuzzy Covariance Ma-
trix. Proc. 18th IEEE Conference on Decision and Control (IEEE CDC, San Diego,
CA), 761–766, IEEE Press, Piscataway, NJ, USA 1979

14. F. Höppner, F. Klawonn, R. Kruse, and T. Runkler. Fuzzy Cluster Analysis. J. Wi-
ley & Sons, Chichester, England 1999

15. F. Klawonn and R. Kruse. Constructing a Fuzzy Controller from Data. Fuzzy Sets
and Systems 85:177-193. North-Holland, Amsterdam, Netherlands 1997

16. A. Klose, A. Nürnberger, R. Kruse, G.K. Hartmann, and M. Richards. Interac-
tive Text Retrieval Based on Document Similarities. Physics and Chemistry of
the Earth, Part A: Solid Earth and Geodesy 25:649–654. Elsevier, Amsterdam,
Netherlands 2000

17. T. Kohonen. Learning Vector Quantization for Pattern Recognition. Technical
Report TKK-F-A601. Helsinki University of Technology, Finland 1986

18. T. Kohonen. Self-Organizing Maps. Springer-Verlag, Heidelberg, Germany 1995
(3rd ext. edition 2001)

19. R. Krishnapuram and J. Keller. A Possibilistic Approach to Clustering, IEEE
Transactions on Fuzzy Systems, 1:98-110. IEEE Press, Piscataway, NJ, USA 1993

20. K.E. Lochbaum and L.A. Streeter. Combining and Comparing the Effectiveness
of Latent Semantic Indexing and the Ordinary Vector Space Model for Informa-
tion Retrieval. Information Processing and Management 25:665–676. Elsevier,
Amsterdam, Netherlands 1989

21. D. Mladenic. Using Text Learning to help Web browsing. Proc. 9th Int. Conf. on
Human-Computer Interaction. New Orleans, LA, USA 2001

22. M. Porter. An Algorithm for Suffix Stripping. Program: Electronic Library &
Information Systems 14(3):130–137. Emerald, Bradford, United Kingdom 1980

23. G. Salton, A. Wong, and C.S. Yang. A Vector Space Model for Automatic Indexing.
Communications of the ACM 18:613–620 ACM Press, New York, NY, USA 1975

24. G. Salton and C. Buckley. Term Weighting Approaches in Automatic Text Re-
trieval. Information Processing & Management 24:513–523. Elsevier, Amsterdam,
Netherlands 1988

25. G. Salton, J. Allan, and C. Buckley. Automatic Structuring and Retrieval of Large
Text Files. Communications of the ACM 37:97–108. ACM Press, New York, NY,
USA 1994

26. M.P. Sinka, and D.W. Corne. A Large Benchmark Dataset for Web Document
Clustering. A. Abraham, J. Ruiz-del-Solar, and M. Köppen (eds.), Soft Computing
Systems: Design, Management and Applications, 881–890. IOS Press, Amsterdam,
The Netherlands 2002

27. H. Timm, C. Borgelt, and R. Kruse. A Modification to Improve Possibilistic Cluster
Analysis. Proc. IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE 2002, Honolulu,
Hawaii). IEEE Press, Piscataway, NJ, USA 2002

28. Y. Yang and J.O. Pedersen. A Comparative Study on Feature Selection in Text
Categorization. Proc. 14th Int. Conf. on Machine Learning (ICML’97, Nashville,
TN), 412–420. Morgan Kaufman, San Mateo, CA, USA 1997

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 67

68 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Wrapper Generation with Patricia Trees

Sven Meyer zu Eißen Benno Stein

smze@upb.de stein@upb.de

Paderborn University
Department of Computer Science

D-33095 Paderborn, Germany

Abstract The automatic processing of search results that stem from Web-based
search interfaces has come into focus, and it will remain important (as long as
XML is not a universally applied technology). The reasons for this are twofold:
(1) The need for value-added services such as filtering or graphical preparation of
search results will increase. (2) The manual creation of tailored parsers for the in-
formation extraction from HTML pages cannot keep pace with the fast changing
presentation of the search results in right these pages.

Automatic wrapper generation addresses this problem. It means the construction
of a tailored parser for a certain type of HTML page with a minimum of man-
ual intervention. This paper introduces the state of the art and presents an own
development: A two-stage approach that combines highly efficient suffix match-
ing based on a modified Patricia tree along with a knowledge-based analysis of
candidate token sequences.

Key words: Information Extraction, Automatic Wrapper Generation,
Wrapper Induction, Web Mining, Information Retrieval

1 Introduction

Web-based search interfaces are widely used as front-ends for information sources such
as Web search engines, digital libraries, online shops, and other types of databases.
Starting with a keyword search, they generate HTML result pages that contain a list
of the found records. Such a semi-structured representation may be adequate for a hu-
man reader of this page; however, it is difficult to be further processed by applications
that provide value-added services such as filtering, grouping, re-arranging, or graphical
preparation: The generated record lists are not directly machine-readable and need to
be “disrobed” of their wrapping code. Figure 1 shows an example.

Automatic wrapper generation deals with this problem; it aims at the automatic
construction of a parser that extracts the interesting information by finding records and
eliminating superfluous HTML code.1 The following list mentions several challenges
for automatic wrapper generation, and it also shows its importance for value-adding
services.

1 The term “automatic wrapper generation” may be misleading; perhaps a better description is
“automatic parser generation for wrapping code”.

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 69

Turing Test

Header
information

T-Online
specific
topics

Additional
navigation
features

Interesting
result list

Advertisment

Figure 1. The snapshot shows a clipping of the T-Online search interface. For a subsequent pro-
cessing of the search results a special block (bottom middle) has to be found as well as correctly
parsed.

(1) A result list of records is embedded in header and footer information, which typi-
cally contains HTML code for navigation, logos, copyright notices, advertisements,
etc.

(2) Each search interface brings along its own concept of wrapping its records, which
includes particular font styles, enumeration styles, etc.

(3) The data structure within a record may vary with respect to presentation and data
element constraints.

(4) Recurring navigational information like “search more of this” may be contained
within a record.

(5) Structure and presentation of a generated list may change every now and then, when
the provider modifies the design of the presentation.

The paper in hand is devoted to this problem; more specifically, it focuses on the ex-
traction of records from Web search engines. This work is also related to our AIsearch
project where search results from different information sources are grouped themati-
cally within a categorization step [15, 18]. In this context, especially Point 5 is of a high
importance, since we experience the generated HTML pages to change frequently. 2

We present a two-stage approach that combines highly efficient suffix matching
based on a modified Patricia tree with a knowledge-based analysis of candidate token

2 This in turn means that human intervention becomes necessary to adapt in AIsearch the re-
spective parser code for this information source.

70 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

sequences. The remainder of this paper is organized as follows. The next subsection
gives an overview of existing approaches to automatic wrapper generation. Section 2
introduces our approach, and Section 3 presents some analysis results.

1.1 Classification of Existing Approaches

To hand-craft a tailored information extraction algorithm may be acceptable for a small
number of search interfaces; however, in the long run it constitutes a considerable over-
head: For each information source, a programmer must identify characteristic HTML
patterns that wrap interesting data records, the so-called “extraction patterns”, and use
them to write a parser. This procedure is tedious and error-prone, and a small change in
the design of a result page often renders hand-crafted parsers defective.

For this reason automatic information extraction algorithms have been developed in
the last years. They can be divided into wrapper generation algorithms, wrapper ver-
ification algorithms, and wrapper re-induction algorithms [9]. Among these, wrapper
generation algorithms are the best investigated ones. Their goal is to generate dedi-
cated programs or program parameters like grammars or patterns, which can be used to
identify record boundaries within result pages of a particular source.

Supervised wrapper generation algorithms3 learn extraction patterns from a set of
training documents wherein records or attribute boundaries have been labeled manually.
The majority of these methods represent the patterns as a finite state machine, e. g. as
a grammar, a regular expression, or in the form of a hidden Markov model [11, 1, 7,
3, 17, 5]. The underlying pattern identification algorithms include inductive and active
learning strategies [10, 4].

Unsupervised techniques overcome the need to manually label training documents.
The approach of Gao et al. uses a set of result pages from the same source and identifies
a region that has a “tabular” structure [6]. Based on this table, candidate extraction
patterns that will match the rows are inferred. Another system, called IEPAD, discovers
repetitive patterns within a result page by means of a Patricia tree and proposes some
of them as record candidates [2]. Liu et al. present an approach to extract data from
HTML tables, which is based on the analysis of the parse tree of a Web site.

The task of wrapper verification algorithms is to check whether a generated wrapper
still behaves as intended, or if design changes within its associated information source
lead to a malfunctioning. Kushmerick et al. propose an algorithm that learns a proba-
bilistic model of the extracted data during the training period, which captures data type
characteristics like the fraction of numeric attributes within a record [8]. A significant
change of the expected data type characteristics in a result page is interpreted as a de-
sign change, and intervention may become necessary. Given the case that a verification
algorithm determines a malfunctioning of a wrapper, so-called wrapper re-induction
algorithms come into play. Lerman and Minton propose a semi-automatic algorithm
that also learns a probabilistic model of the data during a training period [12]. If the
learned model does not fit the extracted data of a result page any longer, their algorithm
maps expected attributes onto data fields within the records of the modified result page
probabilistically.

3 This class of algorithms is also known as semi-automatic wrapper generation algorithms.

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 71

HTML result page

a:act ive
 a: l ink, . t a:act ive,{background-color :#e{background-color :#3 {width:34em}
 {color :#36c}
 . i : l ink{color :#a90a08} .a, .a: l ink{color :#008000} .z{display:none} iv.n {margin-top: 1ex} n a{font-s ize:10pt; color :#0 n . i { font-s ize:10pt; font-weight:bold} q a:v is i ted, .q a: l ink, .q a:ac { font-s ize: 12pt; color :#00c; ch{cursor :pointer ;cursor :hand} {margin-top: .75em; margin

Pattern table T

THTLATA 7 5 (3,1)
ASTHTLATA 9 4 (7,2)
AATTTTHTLATA 12 2 (3,1)
TLATA 5 5 (2,1)
THTTLATSA 9 3 (3,1)
TTTHTL 6 3 (5,2)
SSTHTLATA 9 2 (9,4)
THTL 4 2 (5,3)
...

Token
pattern Len. Freq. Distr.

Knowledge-based
post-processing

Interesting
pattern

Patricia tree
analysis

Figure 2. Two-stage approach to automatic wrapper generation: The identification of candidate
patterns with a Patricia tree is coupled with a knowledge-based post-processing to find among the
candidate patterns the most likely one(s).

In the literature on the subject the term “automatic” refers to the degree of automa-
tion in a wrapper generation algorithm for a given source at a given time. As pointed
out above, the challenge in a meta-search situation is to construct a parser that is robust
against changes of result pages in time. This is what we call adaptive.

2 Adaptive Wrapper Generation for Search Engines

Result pages of search engines contain several regular structures; one of these structures
is the list with the snippets that characterize the matching documents for the query and
which we would like to identify. A regular structure contains sequences that are tagged
in a uniform way. For example at Lycos,4 a snippet is wrapped in the following code:

<a>TEXT
TEXTTEXT<a>TEXT

If one considers the n suffix strings that can be formed from a given HTML page
of length n, several among these suffixes start with the same prefix. 5 When inserting
the suffixes in a Trie,6 multiple occurrences of the prefixes can be efficiently detected.
Since in an HTML result page several hundreds of such recurring patterns can be found,
additional knowledge must be employed to detect those few patterns that actually wrap
the interesting snippets. This observation suggests a two-stage approach for pattern
identification (cf. Figure 2):

(1) Creation of a table T with candidate patterns.
(2) Knowledge-based post-processing of T to identify the interesting pattern(s).

However, a necessary prerequisite is the tokenization of an HTML page, which
provides us with a string S of tokens. There is the question of how fine-grained the text

4 http://www.lycos.de
5 A suffix of a string S is a substring of S that starts at some position i ≤ |S| and ends at

position |S|.
6 The term “Trie” is derived from the terms “tree”, “information”, and “retrieval” and designates

an index structure for efficient text search [19].

72 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

n|m
n = Discriminating byte
m = Discriminating bit

⊥

0|2

0|0

1|1

1|1

dirty dog

cat

cool

Figure 3. A Patricia tree that contains the words “cool”, “cat”, “dirty”, and “dog”. For perfor-
mance reasons the discriminating position is encoded as a pair of byte and bit position.

elements in the HTML page shall be distinguished. Chang and Lui distinguish merely
two tokens, namely “HTML tag” and “plain text” [2]; to leave more flexibility for the
knowledge-based post-processing step we currently support about 130 different tokens.

2.1 Table Creation

Let S be a string (of tokens) of length n. As mentioned above, a Trie provides an effi-
cient means to set up a table of candidate patterns. The theoretically optimum algorithm
for constructing an index of all suffixes for S is the suffix tree [14]; its runtime is linear
in the length of S. A naive algorithm would generate the n suffix strings of S and insert
them in a standard Trie, which results in a runtime of O(n2).

Our approach is oriented at the naive algorithm: However, the n suffixes of S are
not generated explicitly but “read off” by moving an index from 1 to n over S. Every
suffix is identified by its starting position, and a Patricia tree (explained below) is used
to identify all suffixes that start with the same token sequence. Though the theoretical
runtime still is O(n2) this approach will behave even more efficient than a suffix tree
implementation, except for a few pathological cases. 7

A Patricia tree8 is a particular digital search tree that has two salient properties:
(1) Each inner node in the tree is used for differentiation purposes, say, each inner node
has two successors. (2) The keys (strings) are not stored into leafs but into inner nodes,
which saves half of the nodes. A Patricia tree has the characteristic of digital search
trees in that its structure is independent of the insertion sequence. A digital search tree
considers keys as bit sequences; an inner node defines the position of the key that shall
be investigated for discrimination purposes. Figure 3 gives an example.

From a Patricia tree all repeating sequences in the token string S can be collected
in O(n) runtime and put into a table T .

7 Rationale for this behavior is that the length of the longest common subsequence in a tokenized
HTML page can be assessed by a constant.

8 The term “Patricia” is an acronym for “practical algorithm to retrieve information coded in
alphanumeric”. The data structure was proposed by Morrison [16].

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 73

2.2 Table Post-Processing

Typically the table T of candidate patterns contains more than hundred entries. For re-
liable identification of the interesting element, all patterns (token sequences) are char-
acterized by several features. The most important ones are: pattern length, pattern fre-
quency, pattern distribution, average pattern distance.

This information is used within heuristic rules that assign positive and negative
evidence values to the patterns—example:

IF length(p)*frequency(p)/n > 0.2 THEN raise evidence(p, 2)

Here p ∈ T designates a pattern; the rule assesses the portion by which p covers the
entire token string S. In our current implementation, which focuses on HTML result
pages of search engines, the evidence values can be estimated; nevertheless, it is planned
to acquire them by a machine learning approach soon.

3 Quantitative Analysis

Adaptive wrappers are generated on the fly, in extreme cases each time a search result
is delivered from a search engine. I. e., performance analyses are not only interesting
with respect to extraction quality, but also with respect to wrapper generation time. We
did some analyses in this connection, based on a test corpus with about 100 generated
result pages for several popular search engines. Our wrapper implementation is done
in Java, and the experiments were conducted on a Pentium IV 1.2 GHz system running
RedHat Linux.

Amount of Tokenization Patricia tree Pattern Pattern Total
sample pages generation extraction analysis

28KB 121 ms 23 ms 32ms 19ms 195ms

Table 1. Average runtime of different steps in the course of adaptive wrapper generation.

Table 1 shows the averaged runtime for wrapper generation for one result page. The
tokenization of the result pages took over 60% of the total runtime, since we used a
generic HTML parser that was not optimized for our tokenization step. The heuristic
ranking of relevant patterns within the created table T was always very good, and thus
explains the low pattern analysis time. Due to the fact that a wrapper verification algo-
rithm also has to parse and analyze a result page, we do not expect substantial runtime
differences between both approaches. Note that it is conceivable to generate an adaptive
wrapper on the client machine of a user, in a stand-alone meta search application.

AltaVista Lycos Netscape

≈ 80% ≈ 90% ≈ 90%

Table 2. Portion of correctly identified result lists. Basis were about 100 different result pages for
each of the mentioned search engines.

74 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

a:act ive
 a: l ink, . t a:act ive,{background-color :#e{background-color :#3 {width:34em}
 {color :#36c}
 . i : l ink{color :#a90a08} .a, .a: l ink{color :#008000} .z{display:none}
 iv.n {margin-top: 1ex} n a{font-s ize:10pt; color :#0 n . i { font-s ize:10pt; font-weight:bold} q a:v is i ted, .q a: l ink, .q a:ac { font-s ize: 12pt; color :#00c; ch{cursor :pointer ;cursor :hand}

THTLATA 7 5 (3,1)
ASTHTLATA 9 4 (7,2)
AATTTTHTLATA 12 2 (3,1)
TLATA 5 5 (2,1)
THTTLATSA 9 3 (3,1)
TTTHTL 6 3 (5,2)
SSTHTLATA 9 2 (9,4)
THTL 4 2 (5,3)
...

Token
pattern Len. Freq. Distr.

Base-type-specific
post-processing

Interesting
pattern

Identification
of base type

......

Figure 4. If the process of automatic wrapper generation is organized as a three-stage approach,
the knowledge-based post-processing step gains twice: It becomes more effective and easier to
be implemented.

Table 2 contains some classification results. The post-processing was able to iden-
tify most of the records. However, we employed the knowledge that a record at least
contains a URL and a headline.

4 Current Work

The two-stage approach to wrapper generation presented in this paper provides a high
degree of flexibility. Nevertheless, the knowledge-based post-processing step becomes
more and more intricate with the number of different information sources that shall be
handled.

It would be useful in this connection, if a certain “result page base type” is recog-
nized in advance, such as “Shop” or “Link List”, and a dedicated set of rules is chosen
and applied in the knowledge-based post-processing step (see Figure 4). In our current
work we investigate how the necessary recognition step can be realized by learning a
fingerprint from the pattern table.

Moreover, we are developing measures of robustness and flexibility for a generated
wrapper in order to prognose both (1) its reliability when parsing HTML pages from in-
formation sources the parser was not designed for, and (2) the expected malfunctioning
rate depending of extent of modifications of the HTML page.

References

[1] Naveen Ashish and Craig Knoblock. Wrapper Generation for Semi-Structured
Internet sources. SIGMOD Rec., 26(4):8–15, 1997. ISSN 0163-5808.

[2] Chia-Hui Chang and Shao-Chen Lui. IEPAD: Information Extraction Based on
Pattern Discovery. In Proceedings of the Tenth International Conference on
World Wide Web, pages 681–688. ACM Press, 2001. ISBN 1-58113-348-0.

[3] B. Chidlovskii, J. Ragetli, and M. de Rijke. Automatic Wrapper Generation for
Web Search Engines. In Proceedings WAIM’00, LNCS. Springer, 2000.

[4] A. Finn and N. Kushmerick. Active Learning Selection Strategies for
Information Extraction. In ECML-2003 Workshop on Adaptive Text Extraction &
Mining, 2003.

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 75

[5] Dayne Freitag and Nicholas Kushmerick. Boosted Wrapper Induction. In
Proceedings of the Seventeenth National Conference on Artificial Intelligence
and Twelfth Conference on Innovative Applications of Artificial Intelligence,
pages 577–583. AAAI Press / The MIT Press, 2000. ISBN 0-262-51112-6.

[6] X. Gao, M. Zhang, and P. Andreae. Learning Information Extraction Patterns
from Tabular Web Pages without Manual Labeling. Technical report, Victoria
University of Wellington, 2003.

[7] C. N. Hsu and C. C. Chang. Finite-State Transducers for Semi-Structured Text
Mining. In Proceedings of IJCAI-99 Workshop on Text Mining: Foundations,
Techniques and Applications. Pergamon Press, 1999.

[8] N. Kushmerick. Wrapper Verification. World Wide Web Journal, 3(2):79–94,
2000.

[9] N. Kushmerick and B. Thomas. Adaptive Information Extraction: Core
Technologies for Information Agents. In Intelligent Information Agents R&D in
Europe: An AgentLink perspective, 2002.

[10] N. Kushmerick, D. Weld, and B. Doorenbos. Wrapper Induction for Information
Extraction. In Proceedings of IJCAI-97, 1997.

[11] Nicholas Kushmerick and Daniel S. Weld. Wrapper Induction for Information
Extraction. PhD thesis, Department of Computer Science & Engineering,
University of Washington, 1997.

[12] Kristina Lerman and Steven Minton. Learning the Common Structure of Data. In
Proceedings of the Seventeenth National Conference on Artificial Intelligence
and Twelfth Conference on Innovative Applications of Artificial Intelligence,
pages 609–614. AAAI Press / The MIT Press, 2000. ISBN 0-262-51112-6.

[13] Bing Liu, Robert Grossman, and Yanhong Zhai. Mining Data Records in Web
Pages. In Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 601–606. ACM Press, 2003.
ISBN 1-58113-737-0.

[14] E. McCreight. A Space-Economical Suffix Tree Construction Algorithm.
Journal of the ACM, 23(2):262–272, 1976.

[15] Sven Meyer zu Eißen and Benno Stein. The AIsearch Meta Search Engine
Prototype. In Amit Basu and Soumitra Dutta, editors, Proceedings of the 12th
Workshop on Information Technology and Systems (WITS 02), Barcelona Spain.
Technical University of Barcelona, December 2002.

[16] D. R. Morrison. PATRICIA—Practical Algorithm to Retrieve Information Coded
in Alphanumeric. Journal of the ACM, 15(4):514–534, October 1968.

[17] Stephen Soderland. Learning Information Extraction Rules for Semi-Structured
and Free Text. Machine Learning, 34(1-3):233–272, 1999. ISSN 0885-6125.

[18] Benno Stein and Sven Meyer zu Eißen. AIsearch Homepage.
http://www.aisearch.de, 2003-2004.

[19] G. Stephen. String Searching Algorithms. World Scientific, 1994.

76 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Information Need Assessment in Information

Retrieval

Beyond Lists and Queries

Frank Wissbrock

Department of Computer Science
Paderborn University, Germany

frankw@upb.de

Abstract. The goal of every information retrieval (IR) system is to de-
liver relevant documents to an user’s information need (IN). Therefore an
accurate IN assessment is essential to the quality of the system’s search
results. However, many IR systems ask the users to assess their infor-
mation needs and communicate them to the system, usually in form of
queries. The systems assume the queries to be a perfect assessment of
the information needs and deliver relevant information, ending the inter-
action. However, experiences showed that in many cases the information
need cannot be specified in a single query.
This paper addresses the problems of simple IN assessment and pro-
poses a multi-interface IR system to overcome the problems. Such a sys-
tem supports the user with several search interfaces for different search
contexts. Exemplarily the document retrieval engine AiSearch from the
Knowledge-based Systems Group at Paderborn University is reviewed
to demonstrate some interfaces. This includes a cluster-based interface,
a concept taxonomy interface, and a chronological document relations
interface.

1 Introduction

Information need (IN) is one of the most important concepts in information
retrieval (IR) theory. It is the main input parameter for most IR operations as
well as the main evaluation criteria for the quality of the delivered information.
But even though the concept of information need is central to the success of any
IR system, most IR models treat the concept as intuitively clear and informal.
From this viewpoint the importance of information need assessment is often
underestimated. Indeed in most IR systems information need assessment is user
business. Take for example common internet search engines. They require the
users to formulate their information needs in form of a query, assuming that the
query is an accurate definition of the information need. However, it was shown
that this assumption does not hold for many IR transactions [1] [2].

Starting from the viewpoint that common search engine interfaces do not
support an accurate information need assessment this paper proposes an IR
sytem with multiple user interfaces, where each of the interfaces fits a certain

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 77

search context of the user. Based on a theoretical and historical discussion of
IN assessment in section 2-4 the multi-interface model is presented in section 4.
Section 5 describes AiSearch, a search engine project of the Knowledge-based
Systems Group at Paderborn University, to demonstrate how parts of the model
were implemented and how they look like. [3].

2 Historical Developments in Information Need
Assessment

Before a formal definition of information need and informantion need assessment
is given some approaches to information need assessment are briefly reviewed in
their historical context. The intention is to build a foundation for the definitions
given in the next section.

2.1 Query approach

The query approach was the first IN assessment method and is still widely used.
It was developed in the late 1950s and early 1960s in the context of text proper-
ties research and the formulation of the standard IR model [4] [5]. The basic idea
of the approach is to let the user assess his information need. Therefore the user
enters a query, which usually consists of one or more natural language terms. In
turn the system presents all documents from its database that match the query.
In 1965 Roccio added an additional step to the query approach: the relevance
feedback [6]. With relevance feedback the user judges the result in light of its
relevance to his or her information need. Therefore he classifies the returned
documents into two classes, the relevant documents and the non-relevant docu-
ments. After that the system uses the classification to adjust the initial query
and the retrieval process starts again with the adjusted query. The new result
is, if necessary, classified again by the user. The assessment is repeated until the
query is a perfect representation of the user’s information need.

2.2 Dialog approach

The query approach bases on the assumption that the user knows what his in-
formation need is and that he can adequately communicate it to the system.
Relevance feedback takes care of an accurate IN assessment. However, relevance
feedback implicitly assumes that the information need itself stays constant over
time, even when the user has gained new knowledge during the search process.
Recognizing that this assumptions did not hold always, Oddy proposed a dialog
interface in 1977 [1]. The basic idea is that a user’s understanding of his infor-
mation need underlies a continuing evolution while new information is retrieved.
The dialog interface allows the user to reformulate his previous query to broaden
or narrow the retrieved information or to shift the search goal. The interaction
is continued until the needed information is found. The difference to the query

78 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

approach is that Oddy embedds the user into the IR system. The user is no
longer only an input giver but a part of the retrieval process.

Some years later Belkin shifted the focus even farther to the user and his
information need [2]. He asked why most users are not able to specify their
information needs in an appropriate way. The answer was given by a new element
in the user model: the ”anomalous state of knowledge” (ASK) of the user [2].
Therefore every user who faces a problem or situation has a feeling about a gap
in his knowledge, the anomaly. In how far the anomaly is understood by the
user depends on his cognition of the particular situation. Belkin introduced two
levels of specificability: the cognitive level and the linguistic level. The cognitive
level refers to what degree the user is able to specify (understand) his current
situation. The linguistic level refers to the degree the user is able to specify his
information need in linguistic terms. Belkin states that if a user is not able to
understand his current situation at the cognitive level well enough, then he will
hardly be able to express his information need at the linguistic level. He suggests
a system design that is built around the user and his ASKs. He refers to Oddy’s
dialog approach as a good example for such a system design [7] [8].

2.3 Berrypicking approach

In 1989 Bates discovered that the relevant documents are not only the documents
which are retrieved at the end of the search, but also some of the documents
encountered during the search [9]. He proposed a new approach, which accounts
for the changing information need during the search. In every step of the search
the user may reformulate his information request based on the knowledge gath-
ered in previous steps. The user is also allowed to keep some of the retrieved
documents as relevant. His approach is an evolving search like Oddy’s, but dif-
fers in that the relevant documents are collected step by step like berries are
picked in the forest. Therefore the approach is named berrypicking. In addition
he observed that users tend to change their search strategy depending on their
rational information need.

2.4 Clustering approach

The above approaches assume some kind of interaction between system and user.
In contrast clustering infers from the structure of the document collection on the
information needs that could be satisfied with the document collection. Docu-
ment clustering was subject to research since the 1960s [10] [11] [12]. In 1979
van Rijsbergen formally connected clustering and information need by formulat-
ing the cluster hypothesis, which states that closely associated documents are
relevant to the same information request [11]. Therefore clustering algorithms
highlight patterns in a document collection and allow the users to browse for
the needed information. The explosion of digital stored information during the
1990s made this approach very attractive. However, many design questions are
still open, most namely the evaluation of document cluster quality [13] [14].

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 79

3 Essentials of Information Need Assessment

Based on the historic review in the previous section the following definitions
intend to clarify the concept of information need.

Definition 1 (Information Need). Information need refers to the amount of
all absence information, which is necessary for a user to reach his or her goals
in a particular situation. The following assumptions hold:

1. The user may not know what exactly his information need is.
2. The user may not be able to formulate his information need.
3. The information need of a particular user may shift during a search session.

Definition 2 (Rational Information Need and Radical Information Need).
Let I(U, S) be the information need of user U in situation S. The part of the
information need the user is aware of is referred to as rational information need
IRt. The part of the information need the user is not aware of is referred to as
radical information need IRd. Rational and Radical information need are dis-
junct:

1. IRt(U, S) ∪ IRd(U, S) = I(U, S).
2. IRt(U, S) ∩ IRd(U, S) = ∅.

Definition 3 (Information Need Assessment). Information need assess-
ment refers to the process of increasing the degree of rational information need
of a user during a search session.

4 IR Assessment Model

The IN Assessment approaches are not competing with each other for which one
is the best. Instead each approach fits a certain search context better than the
others. IR system interfaces should account for this and dynamically adapt to
the user’s search context. The model in Figure 1 shows the IR Multi-Interface
Model, which incorporates different IN assessment approaches.

The model consists of three layers built around the user. The inner layer
represents the interfaces. Every interface gives the user another view on the
data. The middle layer represents the engines, which are necessary to realize the
interfaces. The outer layer represents the coordination system. The coordination
system decides what interface is presented to the user in a particular situation.

For the coordination system to work the classification framework in figure 2 is
applied. The framework classifies IN assessment methods along two dimensions:
the assessment time and the assessment style.

The assessment time refers to the timeframe in which information is gath-
ered about the user. In the case that the system encounters an unknown user,
who demands just in time information, the assessment time is short-term. This
situation is common for mass-user internet search engines. In the case that the
system continuously collects data about the information need of its users, the

80 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Information
Need

Goals Situation

Query please:

Document 1
Document 2
Document 3

Question 1:
> Yes

Suggestion 2:
>

New
information!

Query
analysis
engine

Dialog
engine

Clustering
engineList ranking

engine

Profiling
engine

Distribution
engine

C
oo

rd
in

at
io

n
S

ys
te

m
C

oordination S
ystem

Fig. 1. Multi-Interface Model: The IR system is build around the user. It offers different
interfaces for searching in the system’s database.

assessment time is long-term. The advantage of long-term IN assessment is that
the system can distribute new relevant information to its users when it enters
the system. However, for this setting the users should have, at least to some
degree, a constant information need over the time.

The assessment style refers to the degree of human/computer involvement in
the IN assessment process. If the user formulates his information need by himself,
then the assessment style is supervised. This style is very useful when the user
knows what source he is looking for. If the system assesses the information need
of the user, then the assessment style is unsupervised. This situation is very
common when a user acquaint himself with some new topic and does not know
the important keywords. But also in the case that an overwhelming amount of
relevant information exists unsupervised methods are useful to discover some
structure in the information. If both, the user and the system, are involved in
the IN assessment, then the assessment style is semi-supervised.

The assessment style is closely tied to the degree of rational IN/radical IN.
The higher the degree of rational information need in relation to radical infor-
mation need the more likely a supervised method will support the user and vice
versa. Therefore a search usually starts with an unsupervised or semi-supervised
IN assessment method and moves during the search session torwards a supervised
method.

5 AiSearch

AiSearch is a Web document retrieval engine developed by the Knowledge-based
Systems Group at Paderborn University [3]. The engine is used for research in
information retrieval. For the purpose of information need assessment the engine

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 81

6

5

2

1 3Query formulation

Relevance feedback

Dialog
Clustering

Profiling Monitoring

supervised semi-supervised unsupervised

long
term

short
term

IN Assessment Style

IN
 A

ss
es

sm
en

t T
im

e

4

Fig. 2. IN Assessment classification: The IN assessment approaches are classified along
the two dimensions assessment style and assessment time. The transparent numbers
indicate the degree of IR system involvement in the IN assessment. They range from
one (low IR system involvement) to six (high IR system involvement).

incorporates different user interfaces. Up to now two clustering based interfaces
are implemented and a third, which highlights chronological relations between
documents, is subject to research.

5.1 Implemented Interfaces

Figure 3 shows a clustering based IR interface. In this view the retrieved doc-
uments are clustered into conceptionally similar groups. The groups are repre-
sented by rectangulars and their content is described by terms on the correspond-
ing rectangular. The content of the selected cluster, which is always centered, is
shown in the window on the right side of the screen. The conceptional distance
between two clusters are indicated by the distribution of the rectangulars on the
screen. Therefore the closer a cluster is located to the center the more closely
it is related to the selected cluster. In addition a numbered line between two
clusters indicate their closeness in quantitative terms.

In contrast the screenshot in Figure 4 shows a taxanomic view of document
clusters. In this view only a small number of all clusters are displayed. The
clusters are represented by a term, which describes the content. When a user
clicks on one of the terms the corresponding cluster is extended and the view
displays its subtopics. The view is very useful when the information need is
highly unspecific and the IR system returns a large number of different clusters.
In this case a presentation of all clusters at the same time would confuse the
user.

5.2 Future work

An interface that highlights chronological relations between documents is subject
to current reseach. The basic idea is that knowledge about the development of a

82 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Fig. 3. Cluster-based view: The documents are clustered in conceptionally similar
groups. The rectangulars represent the clusters, the terms on every rectangular de-
scribe the content, and the line between two connected rectangulars indicate their
closeness. On the right side of the sceen the content of the selected cluster is displayed
in ranked order.

certain topic over time is useful in some situations. Figure 5 shows schematically
two views on chronological structured documents. The view on the left side shows
a visualization for clusterd results. The vertical axis represents the clusters and
the horizontal axis the timeline. Circles in the coordination system represent
documents. The bigger a circle the more documents of the corresponding topic
refer to events at that time. The view on the rights side shows the ”chronological
environment” of the current document.

The realization of the engine for the chronological analysis demanded the
construction of a knowledge base. At the core of the knowledge base is a set of
manual tagged text documents. The tag structure is used to extract time/event
entities. A time/event entity is for example the sentence ”He plans to change
to another club in 2005.”. It is called time/event entity because the sentence
describes an event that takes place at a certain time. Every single time/event
entity is used as an example in the knowledge base database. Figure 6 shows
a screenshot of the engines rule manager and a set of examples. The structure
of every example is finegrained with additional tags like ¡Year¿ and ¡/Year¿ or
¡Number¿ and ¡/Number¿. Based on the examples and a set of principles the
system automatically indentifies time/event entities in texts.

At the moment the engine is still a prototype and its result quality subject to
current research. A more detailed description of the system and its performance
in practical settings will occur in follow-up publications during this and next
year. In addition the content of the texts is restricted to sports topics. However
an extension to political and business topics is planned.

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 83

Fig. 4. Taxonomic view: A small number of all cluster is displayed at the beginning.
Every cluster is represented by a term, which describes its content. The user can extend
the clusters to display subtopics.

6 Summary and Outlook

The purpose of this paper was to shift the eye of the reader to the importance of
information need assessment. Therefore the text started by criticising the short-
comings of current IN assessment practices, namely the query input/list output
IR systems. A historical survey showed that a user is embedded in different
search contexts, which determine how much the user knows about his current
information need. The IR Multi-Interface Model was presented to address the
existence of several search contexts and it was stated that an IR system should
offer different user interfaces and views on the data. Finally the search engine
AiSearch was surveyed to demonstrate the functioning of different interfaces in
practice.

For the furture the Knowledge-based Systems Group at Paderborn University
plans to introduce more interfaces for AISearch. In the short run the view on
chronological structured documents will be added to the system and performance
statistics will be published in follow-up papers.

References

1. Oddy, R.: Information retrieval through man-machine dialogue. Journal of Docu-
mentation 33 (1977) 1–14

2. Belkin, N.: Anomalous states of knowledge as a basis for information retrieval.
Canadian Journal of Information Science 5 (1980) 133–143

3. Stein, B., zu Eißen, S.M.: Aisearch: Category formation of web search results.
Technical report, Paderborn University (2003)

4. Luhn, H.: The automatic creation of literature abstracts. IBM Journal of Research
and Development 2 (1958) 159–165

84 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

Timeline

Cluster 1

Cluster 2

Cluster k

.

.

.

Inner cluster distribution

Timeline

Topic development

Information Retrieval

1980 1990 2000

Fig. 5. Views on chronological structured documents.

Fig. 6. Screenshot of the rule manager of the chronological analysis engine.

5. Salton, G., Lesk, M.: The smart automatic document retrieval system - an illus-
tration. Communications of the ACM 8 (1965) 391–398

6. Rocchio, J., Salton, G.: Information optimization and interactive retrieval tech-
niques. In: Proceedings of the AFIPS-Fall Joint Computer Conference, Part I.
Volume 27. (1965) 293–305

7. Belkin, N., Oddy, R., Brooks, H.: Ask for information retrieval: Part i. Journal of
Documentation 38 (1982) 61–71

8. Belkin, N., Oddy, R., Brooks, H.: Ask for information retrieval: Part ii. Journal of
Documentation 38 (1982) 145–164

9. Bates, M.: The design of browsing and berrypicking techniques for the online
search interface. Online Review 13 (1989) 407–424

10. Doyle, L.: Semantic road maps for literature searchers. Journal of the ACM 8
(1961) 553–578

11. Rijsbergen, C.: Information Retrieval. Buttersworth, London (1979)

12. Salton, G.: Automatic Text Processing: The Transformation, Analysis and Re-
trieval of Information by Computer. Addison-Wesley (1988)

13. Stein, B., Meyer zu Eißen, S., Wißbrock, F.: On Cluster Validity and the In-
formation Need of Users. In Hanza, M., ed.: Proceedings of the 3rd IASTED

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04) 85

International Conference on Artificial Intelligence and Applications (AIA 03), Be-
nalmdena, Spain, Anaheim, Calgary, Zurich, ACTA Press (2003) 216–221

14. Stein, B., Meyer zu Eißen, S.: Automatic Document Categorization: Interpreting
the Perfomance of Clustering Algorithms. In Gnter, A., Kruse, R., Neumann, B.,
eds.: KI 2003: Advances in Artificial Intelligence. Volume 2821 LNAI of Lecture
Notes in Artificial Intelligence., Springer (2003) 254–266

86 Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

	yamout04-further-enhancement-porter-stemming.pdf
	3. Drawbacks of the Porter Algorithm
	4. Modifications
	5. Experiments
	Appendix: Dissimilarities between existing and new algorithm

