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Preface

Being in the age of information—so to speak: information flooding—intelligent tech-
nologies for information mining and retrieval have become an important as well as ex-
citing field of research. In this connection, methods of text-based information retrieval
receive special attention, which results from the fundamental role of written text, but
also because of the high availability of the Internet. E.g., information retrieval methods
have the potential to improve the quality of the standard keyword search; moreover,
they strike a path to the new developments from the field of the Semantic \Web.

There are various techniques and methods being used for text-based information re-
trieval tasks, which stem from different research areas: machine learning algorithms,
models from computer linguistics and psychology, paradigms from the field of user
interaction and modeling, or algorithms for information visualization. The develop-
ment of powerful retrieval tools requires the combination of these developments, and
in this sense the workshop shall provide a platform that spans the different views and
approaches.

The following list gives examples from classic and ongoing research topics from the
field of text-based information retrieval: document models and similarity measures
for special retrieval tasks, automatic category formation, topic identification and auto-
abstracting, plagiarism analysis, ontologies and the Semantic Web, concepts and tech-
niques for information visualization, user modeling and interaction for particular re-
trieval tasks, evaluation and construction of test collections.

Workshop Organization

Benno Stein, University of Paderborn
Sven Meyer zu EiRen, University of Paderborn
Andreas Nirnberger, University of Magdeburg

Program Committee

Stefan Bottcher, University of Paderborn
Heiko Holzheuer, Lycos Europe, Gutersloh
Oliver Niggenann, dSPACE, Paderborn
Andreas Nirnberger, University of Magdeburg
Sven Meyer zu Eiflen, University of Paderborn
Benno Stein, University of Paderborn
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Further Enhancement to the Porter’s Stemming Algorithm

Fadi Yamout!, Rana Demachkieh', Ghalia Hamdan', Reem Sabra®
! Faculty of Computer Sciences
C&E American University 1., Beirut, Lebanon
Email: fyamout@inco.com.lb

Abstract. Stemming algorithms are used to transform the words in texts into their
grammatical root form, and are mainly used to improve the Information Retrieval
System’s efficiency. Several algorithms exist with different techniques. The most
widely used is the Porter Stemming algorithm. However, it still has several
drawbacks, although many attempts were made to improve its structure. This paper
reveals the inaccuracies encountered during the stemming process and proposes the
corresponding solutions.

1. Introduction

Finding information is not the only activity that exists in an Information Retrieval
(IR) system. Indexing, for instance, refers to how information and user’s requests
from the system are represented. We will refer to the information to be indexed as
documents. Hence, documents are represented through a set of index terms or
keywords. The terms are extracted from the text of the documents. This might be done
automatically or generated by a specialist.

It was estimated in Kowalski [1] that for relatively short documents (e.g., 300-500
words) it normally takes a specialist at least five minutes per item to produce the
terms, while it takes just a few seconds on a moderate computer. The extracted terms
are mainly nouns since they describe better the semantic of the documents while
adjectives, adverbs, and connectives (including transitions, conjunctions...) are less
useful because they work mainly as complements.

These irrelevant terms are usually placed in a file called Stoplist. A Stoplist algorithm
is applied to all the documents in the collection with an objective to eliminate the
terms that have little value to the system. In addition, a word, which occurs in 80% of
the documents in the collection, is useless [2]. An example of 425 stopwords is shown
in a list in Frakes and Baeza-Yates [2]. The remaining terms are stemmed using
Porter's algorithm [3], which brings down distinct words to their grammatical root and
thus reduces further the number of unique terms.

Many attempts were made to improve the structure of the Porter algorithm [4],
however, it still has several drawbacks. In this paper, further improvements are
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introduced to overcome these problems in order to enhance the stemming process. We
will refer to the existing Porter algorithm as Porter 2002 and the new as Porter 2004.

2. Porter’s Algorithm

Porter Stemming Algorithm was developed by Martin Porter at the University of
Cambridge in 1980 and was first published in Porter, M.F., [5] and reprinted in
Sparck, Karen, and Peter [6]. As described in the publication, “The Porter stemming
algorithm (or ‘Porter stemmer’) is a process for removing the commoner
morphological and inflexional endings from words in English. Its main use is as part
of a term normalization process that is usually done when setting up Information
Retrieval systems”. Since then it has been very widely used and coded in various
programming languages. It is based mainly on stemming operations that remove
suffixes from words, such as gerunds (motoring = motor), plurals (cats - cat), and
replacing words ending with "ator" for example with "ate" (operator - oper), etc....

These operations are classified into rules where each of these rules deals with a
specific suffix and having certain condition(s) to satisfy. A given word’s suffix is
checked against each rule in a sequential manner until it matches one, and
consequently the conditions in the rule are tested on the stem that may result in a
suffix removal or modification.

3. Drawbacks of the Porter Algorithm

Natural languages are not completely regular constructs, and therefore stemmers
operating on natural words unavoidably make mistakes. For instance, words, which
are distinct, may be wrongly conflated to give similar stems (ex: design = design;
designate = design, etc...) and affect seriously the retrieval performance of an IR
system since the semantic of the word is expressed differently; these are known as
over-stemming errors. On the other hand, words which ought to be merged together
may remain distinct after stemming (ex: characterizes - character; characteristic >
characterist, etc...); these are known as under-stemming errors and do not affect the
retrieval performance of an IR system [2]. In this paper we deal with over-stemming
errors.

The modified Porter algorithm was tested on 23,531 words provided by Porter and
compared to an already existing output provided from the same site. In addition, it
was tested on 45,000 words extracted from the Oxford’s dictionary, and the following
over-stemming errors were observed:

! http://www.tartarus.org/~martin/PorterStemmer/index.html
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Error #1:
The non-existence of “e” at the end of the words that have m=1 and begin with a
consonant, and end with two consonants; for ex: paste, loathe...:

Paste - past

Past > past

Error #2:

The removal of “s” in stepl from words ending with “is” such as his and appendicitis:
Appendicitis - append
Append -> append

Error #3:
Words ending with “yed” and *“ying” and having different meanings may end up with
the same stem:

Dying - dy (impregnate with dye)

Dyed - dy (passes away)

Error #4:
The removal of “ic” or “ical” from words having m=2 and ending with a series of
consonant, vowel, consonant, vowel, such as generic, politic...:

Political - polit

Politic - polit

Polite - polit

Error #5:
The removal of the suffix “ative” from all words ending with it and having m=1 or
m=2, the thing that leads to serious conflicts:

Combative - comb Generative - gener
Comb - comb General - gener
Error #6:

The removal of the suffix “ness” from all words where m=1 and end with consonant,
vowel, consonant (cvc) such as witness:

Witness = wit
Wit - wit
Error #7:

The suffix “al” is removed from all words where m=2 e.g. admiral, animal...:
Admiral = admir
Admire > admir

Error #8:

The elimination of the suffix “eer” from words with m=2 such as engineer:
Engineer - engin
Engine - engin
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Error #9:
The exclusion of the suffix “ible” from all words where m=2 starting by a consonant
and not ending with a series of consonant, vowel, consonant, vowel, such as
responsible:

Responsible = respons

Response - respons

Error #10:
The exclusion of the suffix “ance” from words with m=2 ending with a series of
consonant, vowel, consonant, vowel:

Severance > sever

Several > sever

Error #11:
The removal of the suffix “ment” from all words even those ending with “iment”
having m=2 and not ending with a series of consonant, vowel, consonant, vowel; e.g.
experiment:

Experiment = experi

Experience - experi

Error #12:
The elimination of “ion” from all words where m=2 and not consonant, vowel,
consonant, vowel, without replacement:

Secretion - secret

Secret - secret

Error #13:
The removal of the suffix “ate” or “nate” from all words where m=2 and ending with
a series of consonant, vowel, consonant, vowel:

Designate - design

Design > design

Error #14.
The elimination of the suffix “ize” from all words having m=2 and starting by a
consonant, and ending with a series of consonant, vowel, consonant, vowel:

Colonize - colon

Colon - colon

Error #15:
The exclusion of “itive” from words with m= 1 and starting by consonant, and ending
with a series of consonant, vowel, consonant, vowel:

Positive - posit

Position = posit
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Error #16:
The removal of “iti” from all words where m=2 starting by a vowel and ending with a
series of consonant, vowel, consonant, vowel:

Ameniti - amen

Amen - amen

The removal of “iti” from all words where m=3 starting by a vowel and not ending
with a series of consonant, vowel, consonant, vowel:

Universiti = univers

Universe - univers

4. Modifications

The following section describes the corresponding solutions for each of the errors
revealed previously (Table 1 describes the symbols used).

k : Pointer to the last letter in the word

m() : Counts how many consecutive vowel, consonant exist in a word

cons() : Checks whether the letter at a certain position is a consonant or not

ends() : Determines if the word ends with the variable sent and consequently
truncates this variable from the original word

Tablel: Symbol’s Intuitions
Solution #1:

To solve the problem ending with “e” a function is created to keep the “e” at the end
of the word by returning false

If m=1:

Starts with a consonant and ends with two consonants

Paste, loathe, and bottle.

While adding this method, another problem arises for the words such as beaches,
bushes..., so an additional statement is added to stepl: If the word ends with “ches”
or with “shes” the program will remove the “es" since in step6 the cvd method is
used.

Beaches - beach

Bushes - bush

11
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The cvd method is as follow:

function cvd (int d)
if cons(d) then
d:=d-1;
if lcons(d) and d!=0 then
while !cons(d) and d>0 do
d:=d-1;
if cons(d) then return true;
return false;
return true;

Stepl:
| if ends("ches") or ends("shes") then k :=k-2;

Solution #2:

If the word ends with “is”, the “s” is not deleted
Appendicitis = appendicitis

The statement is:

if ends("is") |

Solution #3:
To prevent words ending with “ying” and “yed”, and having different meanings, from
producing the same stem, the “ying” will be set to “i” if it has m=0, starting with
consonant and vowel.

Dying - di;

Dyed - dy;
The statements are:

if ends("ying) then
if m()=0 and cons(0) and !cons(1) then setto("i");

Solution #4:
Usually the words that end by “ic” in step3 or “ical” in step4 must be removed but in
other cases it must not. Therefore, if the word is of size m = 2 and consists of a series
of consonant, vowel, consonant, vowel, it is replaced by “ica*” rather than being
removed, then in step5 it is transformed to “ic”.

polite=> polit,

political-> politic,

political-> politic
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The statements are:

Step3:
case i if ends("ic") and m()=2 then
while k>0 do
if cons(k) and !cons(k-1) then k := k- 2;
elsej := j+2;k := j; break;
if k <=0 then r("ica*");
break;
else break;
Step4:
case I if ends("ical") then
if m() = 2 then
while k>0do
if cons(k) and !cons(k-1) then k := k- 2;
elsek := j+2; r("ic"); break;
if k<=0then r("ica*"); break ;
else r("ic"); break;
Step5:
if ends ("ica*") then r ("ic"); j := j+ 2; break;
elsej := k; break;

Solution #5:

If the word ends by “ative” and m = 2, it is replaced by “ate”.
Generative—> generate

Orifitis m> 2 it is removed.
Authoritative=> authorit

Orif m=1itis replaced by “at”.
Combative—> combat

The statements are:

if ends("ative") then
if m() =2 then r("ate");
else if m() =1 then r("at");
elseif m() >2 then r("™);

Solution #6:
If the word ends with “ness”, m = 1, and ends with consonant, vowel, and

consonant, it is kept as it is.
Witness—>witness
Else it will be removed.

13
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The statements are:

case's" if ends("ness") then
if m() == 1 and cvc(k-4) then break;
else r("™);
break;
break;

Solution #7:
If it ends by “iral” and m = 2 it is left as it is.
Admiral-> admiral.
Or if it ends by “al”, m = 2, and it consists of a series of consonant, vowel, consonant,
vowel, it is removed
General=> gener

Admiral=> admiral
Else if m >1 it is removed
The statements are:

case 'a" if ends("al") then
if m() =2then
if ends ("iral") then j := j + 4; break;
p:=p-2
while (p>0) do
if cons (p) and !cons(p-1) then p = p-2;
else k := j; break;
if p<=0thenj = j+2;
elseif m() >1 then k := j; break;

Solution #8:

If it ends with “eer” and m = 2, then only the “r” is removed in step4 and
consequently the last “e” is removed in step6

Engineer-> engine
The statements are:

case 'e" if ends("er") then
if m()=2 and ends ("eer") thenj := j+ 2; break;
else break;
return
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Solution #9:
If it ends with “ible”, m = 2, and starts with a consonant and not ending with a series
of consonant vowel consonant vowel, then it is kept as it is.
Responsible = responsible.
Reducible - reduc
Or if m> 1 it is removed.
Reprehensible = reprehens

The statements are:

if ends("ible”) then
if m()=2 and cons(0) then
p=p-4
while p>0do
if cons (p) and !cons (p-1) then p = p-2;
elsej := j+ 3; break;
if p<=0 then k := j; break;
elsek = j;
elseif m() >1then k := j; break;

Solution #10:
If it ends with “ance”, m = 2, and consist of a series of consonant, vowel, consonant,
vowel, therefore, it is replaced by “e”.
Severance->severe,
If not, it is removed.
Importance—>import
The statements are:
case 'c" if ends ("ance") then

if m()=2 then
p=p-4
while p>0do

if cons (p) and !cons(p-1) then p = p-2;
else k := j; break;
if p <=0 and cons(0) then b[j :=j+1]="e"; k := j; break;
else k := j; break;
if m()>1thenk := j; break;

Solution #11:
If it ends with “iment”, m = 2, and not ending with a series of consonant vowel
consonant vowel, therefore, it is left as it is.
Experiment—> experiment
Or if m> 1 it is removed.
Accompaniment—> accompani
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The statements are:

if ends("iment") and m() = 2 then
p:=p-5
while p>0do
if cons(p) and !cons(p-1) then p = p—2;
else break;
if p>0thenj := j+5; break;
if ends ("ement") then break;
if ends ("ment”) then break;

Solution #12:
If it ends with “tion”, m = 2, and not ending with a series of consonant vowel
consonant vowel..., it is replaced with an “e”.
Secretion->secrete
Sedition—>sedit
Orif m> 1 it is removed. The statements are:

if ends("ion") and j >= 0 then
if b[j] = 't' then
if m()= 2 then
p:=p-3
while p>0do
if cons (p) and !cons (p-1) then p = p-2;
else b[j :=j+1] := 'e'; k := J; break;
if p<=0then k := j; break;
else if m() >1then k := j; break;

Solution #13:

If it ends with “nate” or “ate”, m = 2, and ends with a series of consonant vowel
consonant vowel..., it is not replaced.
Designate—>designate
Or if m> 1, then it is removed.
Collaborate—> collabor
Or if m = 1, then the “at” is kept
Situate—> situat
Orif m =0, then it is left as it is.
Ate—>ate
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The statements are:

case 't if ends("nate”) and m() = 2 then
p:=p-4
while p>0do
if cons (p) and Icons (p-1)p = p-2;
else k := j+1; break;
if p<=0and cons(0) thenj := j+ 4; break;
else if ends("ate") then

if m()=2 then
p:=p-3
while p>0do

if cons (p) and !cons(p-1) then p = p-2;
else k := j; break;
if p<=0 and cons(0) then j := j+ 3; break;
else Kk := j; break;
else if m() > 1 then k := j; break;
elseif m()=1thenj := j+2; k := j; break;
elsej := j+ 3; break;

Solution #14:
If it ends with “ize”, m = 2, and starts with a consonant, and ends with a series of
consonant, vowel, consonant, vowel..., it is kept as it is:
Colonize—>colonize
Or if m> 1 it is removed.
Aerosolize=> aerosol
The statements are:

case 'z if ends("ize") then

if m() =2 then
p=p-3
while p>0do

if cons(p) and Icons(p-1) thenp = p-2;
else k := j; break;
if p <=0 and cons(0) then
j = j+ 3; break;
else k := j; break;
elseif m() > 1 then k := j; break;

Solution #15:
If it ends with “itive”, m = 1, starts with a consonant, and ends with a series of
consonant, vowel, consonant, vowel..., it is kept as it is:
Positive—> positive
Or if m> 1 it is removed.
Acquisitive> acquisit
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The statements are:

case ‘v if ends("itive") and m() = 1 and cons(0) Then

p:=p-5
while p>0do
if cons(p) and !cons(p-1) then p = p—2;
elsej := j+2;k := j; break;

if p <=0 and cons(0) then j := j + 5; break;
else k := j; break;
else if ends("ive") break;
return;

Solution #16:
If it ends with “iti”, m = 2, starts with a vowel, and ends with a series of consonant,
vowel, consonant, vowel..., it is kept as it is:

amenity—> ameniti
If it ends with “iti”, m = 3, starts with a vowel, and ends with a series of consonant,
vowel, consonant, vowel..., it is kept as it is:

Universiti=> universiti
Or if m> 1 it is removed

Minority—> minor

The statements are:

if ends ("iti") then

if m()=2then
p=p-3
while p>0do

if cons (p) and !cons(p-1) then p = p-2;
else k := j; break;
if p<=0and !cons(0) thenj := j+ 3; break;
else k := j; break;
else if m() = 3 and !cons(0) then
p:=p-3
while p>0 do
if cons(p) and !cons (p-1) thenp = p-2;
elsej := j+ 3; break;
if p<=0and !cons(0) then k := j; break;
else k := j; break;
else if m() >1then k := j; break;

Exceptions:
Some of the words are considered as exception to the previously described rules, and

therefore are treated separately. The following step contains the words that must keep
their “e” while removing the “ing” or the “ed”.

Loathing - loathe

Pasted - paste
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function step0()
String s1=new String(b);
String s2=new String("rang secret loath past us butt");
if s2.regionMatches(s2.indexOf(b[0]),s1,0,j+1) then
return true;
else return false;

5. Experiments

The previously described solutions produce different results than the existing Porter
algorithm. Outputs from both Porter 2002 and 2004 are put alongside in Appendix to
demonstrate the dissimilarities.

The two techniques were tested against CISI [7], which is a standards test collection
that contains 1460 documents, in an attempt to move more relevant documents (the
ones found in the queries’ relevance judgments) further up the ranking. The result
showed a slight improvement (1.5%) in precision and recall, however for some
queries the improvement was 2.5%. The percentage is computed as an average for the
precision and recall produced by the 30 queries that come with the collection. The
results are illustrated in Figure 1 using the 11-point average curve.

CISI Test Collection
Precision
1
0.9
0.8
0.7
el e
0.4 | —~
%%‘.’// \‘\'ﬁ\-—’—!\
%% N — —
0O 01 02 03 04 05 06 07 08 09 1
Recall
—— Porter 2002 —=—Porter 2004 \

Figure 1: 11 point Average Curve
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Appendix: Dissimilarities between existing and new algorithm

Word Porter02 | Porter04 Word Porter02 | Porter04 Word Porter02 | Porter04
abl abl abl bath bath bath elles ell elle
able abl able bathed bath bath engine engin engin
ach ach ach bathing bath bath engines engin engin
ached ach ach baths bath bath engineer engin engine
aches ach ach bathe bath bathe engineering engin engine
aching ach ach bathes bath bathe even even even
ache ach ache bell bell bell evening even even
ad ad ad belled bell bell evenly even even
add add add belling bell bell evenness even even
added ad add bells bell bell evenings even evening
adding ad add belle bell belle fill fill fill
adds add add bonn bonn bonn filled fill fill
abl abl abl bonne bonn bonne filling fill fill
able abl able born born born fills fill fill
ach ach ach borne born borne fille fill fille
ached ach ach brown brown brown fort fort fort
aches ach ach browning brown brown forts fort fort
aching ach ach browns brown brown forte fort forte
ache ach ache browne brown browne forty forti forti
ad ad ad bush bush bush fortis forti fortis
add add add bushes bush bush front front front
added ad add bushe bush bushe fronted front front
adding ad add call call call fronting front front
adds add add called call call fronts front front
admirable admir admir calling call call fronte front fronte
admirably admir admir calls call call funeral funer funeral
admiration admir admir calle call calle funerals funer funeral
admire admir admir cloth cloth cloth funereal funer funere
admired admir admir clothed cloth cloth futur futur futur
admirer admir admir clothing cloth cloth future futur future
admirers admir admir cloths cloth cloth futures futur future
admires admir admir clothe cloth clothe gang gang gang
admiring admir admir clothes cloth clothe ganging gang gang
admiringly admir admir Cross Cross Cross gangs gang gang
admiral admir admiral crossed cross Cross ganges gang gange
amen amen amen crosses Cross cross generous generous | gener
amenable amen amen crossing Cross Cross generousness (none) gener
amenities (none) amen crosse cross crosse generously generous | gener
amenity (none) amen dank dank dank general general general
and and and danke dank danke generalities general general
ande and ande design design design generality general general
andes andes ande designed design design generalization general general
animate anim anim designer design design generally general general
animated anim anim designing design design generality (none) general
animates anim anim designs design design generalizations | (none) general
animating anim anim designates design designat generalize (none) general
animation anim anim designation design designat generalized (none) general
animal anim animal ear ear ear generalizer (none) general
animalized anim animal eared ear ear generalizers (none) general
animals anim animal earings ear earing generalizes (none) general
Ann ann ann ell ell ell generalizing (none) general
anne ann anne elle ell elle generals general general
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Word Porter02 | Porter04 Word Porter02 | Porter04 Word Porter02 | Porter04
generate generat | generat mont mont mont responsibilities | respons responsibl
generated generat | generat monte mont monte responsibility respons responsibl
generation generat | generat montes mont monte responsible respons responsibl
generates (none) generat numerous numer numer responsive respons respons
generating (none) generat numerical numer numeric roll roll roll
generative (none) generat of of of rolle roll rolle
generator (none) generat off off off rolled roll roll
generators (none) generat offing of off rolling roll roll
generations generat | generat offe off offe rollings roll rolling
generic generic generic past past past rolls roll roll
generically (none) generic pasted past paste round round round
goeth Goeth goeth moral moral moral rounde round rounde
goethe goeth goethe morality moral moral rounded round round
grande grand grande moralities moral moral rounding round round
grandee grande grande morale moral morale roundly round round
grandees grande grande morally moral moral roundness round round
hand hand hand morals moral moral rounds round round
handed hand hand petulance petul petule relax relax relax
handful hand hand petulant petul petul relaxe relax relaxe
handfuls hand hand petulantly petul petul relaxes relax relaxe
handing hand hand petulance petul petule remain remain remain
hands hand hand petulant petul petul remaine remain remaine
hande hand hande petulantly petul petul singeing sing singe
hast hast hast picture pictur picture singing sing sing
haste hast haste pictured pictur pictur sings sing sing
her her her pictures pictur picture scienc scienc scienc
hers her her picturing pictur pictur science scienc science
herrings her herring pierce pierc pierce sciences scienc science
hing hing hing pierced pierc pierc secrete secret secrete
hinges hing hinge pierces pierc pierce secreted secret secrete
host host host piercing pierc pierc secretes secret secrete
hosts host host piercingly pierc pierc secreting secret secrete
hoste host hoste position posit posit secretion secret secrete
however howev howev positions posit posit secretly secret secret
howeve howev howeve positive posit positiv secrets secret secret
iron iron iron positively posit positiv sever sever sever
ironed iron iron positiveness | posit positiv severa severa severa
ironing iron iron private privat privat several sever several
irons iron iron privateer privat private severally sever several
irony ironi ironi privately privat privat severe sever severe
ironical iron ironic privation privat privat severed sever sever
ironically iron ironic privations privat privat severely sever severe
later later later proceed proceed | proce severer sever sever
lateral later lateral proceeds proce proceed severity sever sever
laterally later lateral rang rang rang sooth sooth sooth
loath loath loath range rang range soothe sooth soothe
loathe loath loathe ranged rang range soothed sooth sooth
loathed loath loathe rangees range range soothing sooth sooth
loathing loath loathe ranges rang range soothingly sooth sooth
lungs lung lung ranging rang range start start start
lunge lung lunge regal regal regal starte start starte
missy missi missi regale regal regale started start start
missis missi missis regaled regal regal starting start start
mond mond mond regaling regal regal startings start starting
monde mond monde response respons | respons starts start start
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Word Porter02 | Porter04 Word Porter02 | Porter04 Word Porter02 | Porter04
stern stern stern sternness stern stern witnesses wit witness
sterne stern sterne wit wit wit witnessing wit witness
sternly stern stern witness wit witness wits wit wit
witnessed wit witness witted wit wit
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Abstract. Current text classification systems typically use term stems for rep-
resenting document content. Ontologies allow the usage of features on a higher
semantic level than single words for text classification purposes. In this paper we
propose such an enhancement of the classical document representation through
concepts extracted from background knowledge. Boosting, a successful machine
learning technique is used for classification. Comparative experimental evalua-
tions in three different settings support our approach through consistent improve-
ment of the results. An analysis of the results shows that this improvement is due
to two separate effects.

1 Introduction

Most of the explicit knowledge assets of today’s organizations consist of unstructured
textual information in electronic form. Users are facing the challenge of organizing,
analyzing and searching the ever growing amounts of documents. Systems that auto-
matically classify text documents into predefined thematic classes and thereby contex-
tualize information offer a promising approach to tackle this complexity. During the last
decades, a large number of machine learning methods have been proposed for text clas-
sification tasks [16]. Recently, especially Support Vector Machines [9] and Boosting
Algorithms [15] have produced promising results.

So far, however, existing text classification systems have typically used the Bag-
of-Words model known from information retrieval, where single words or word stems
are used as features for representing document content. By doing so, the chosen learn-
ing algorithms are restricted to detecting patterns in the used terminology only, while
conceptual patterns remain ignored. Specifically, systems using only words as features
exhibit a number of inherent deficiencies:

1. Multi-Word Expressions with an own meaning like “European Union” are chunked into
pieces with possibly very different meanings when treated separately like — in this example
— “union”.

2. Synonymous Words like “tungsten” and “wolfram” are mapped into different features.

3. Polysemous Words are treated as one single feature while they may actually have multiple
distinct meanings.

4. Lack of Generalization: there is no way to generalize similar terms like “gold” and “silver”
to their common hypernym “precious metal”.
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While items 1 — 3 directly address issues that arise on the lexical level, item 4 rather
addresses an issue that is situated on a conceptual level. In this paper, we show how
background knowledge in form of simple ontologies can improve text classification
results by directly addressing these problems.

We propose a hybrid approach for document representation based on the common
term stem representation which is enhanced with concepts extracted from the used on-
tologies. For actual classification we suggest to use the AdaBoost algorithm which has
proven to produce accurate classification results in many experimental evaluations and
seems to be well suited to integrate different types of features. Evaluation experiments
on three text corpora, namely the Reuters-21578, OHSOMED and FAODOC collections
show that our approach leads to consistent improvements of the results. We also show
that in most cases the improvement can be traced to two distinct effects, one being
situated mainly on the lexical level and the generalization on the conceptual level.

This paper is organized as follows. We introduce some preliminaries, namely the
classical bag-of-words document representation and ontologies in section 2. A detailed
process for compiling conceptual features into an enhanced document representation
is presented in section 3. In section 4 we review the AdaBoost algorithm and its in-
ner workings. Evaluation Measures for text classification are reviewed in section 5. In
the following, experimental evaluation results of our approach are presented for the
Reuters-21578, OHSOMED, and FAODOC corpora under varying parameter combina-
tions. It turns out that combined feature representations perform consistently better than
the pure term-based approach. We review related work in section 7 and conclude with
a summary and outlook in section 8.

2 Preliminaries

The Bag-Of-Words Paradigm In the common term-based representation, documents are
considered to be bags of terms, each term being an independent feature of its own. Let
D be the set of documents and T' = {t1, ..., ¢, } the set of all different terms occurring
in D. For each term ¢ € T in document d € D one can define feature values functions
like binary indicator variables, absolute frequencies or more elaborated measures like
TFIDF [14].

Typically, whole words are not used as features. Instead, documents are first pro-
cessed with stemming algorithms, e.g. the Porter stemmer for English [13]. In addition,
Stopwords, i.e. words which are considered as non—descriptive within a bag—of—words
approach, are typically removed.

Ontologies The background knowledge we have exploited is given through simple on-
tologies. We first describe the structure of these ontologies and then discuss their usage
for the extraction of conceptual feature representations for text documents. The back-
ground knowledge we will exploit further on is encoded in a core ontology. For the
purpose of this paper, we present only those parts of our more extensive ontology defi-
nition [2] that we need within this paper.
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Definition 1 (Core Ontology). A core ontology is a structure O := (C, <) consisting
of a set C, whose elements are called concept identifiers, and a partial order <¢ on C,
called concept hierarchy or taxonomy.

Definition 2 (Subconcepts and Superconcepts). If c; <¢ co for any c1,ce € C, then
c1 is a subconcept (specialization) of co and co is a superconcept (generalization) of
c1. If c1 <¢ co and there exists no cz € C with ¢ <¢ c3 < co, then ¢y is a direct
subconcept of ca, and cy is a direct superconcept of c1, denoted by c1 < cs.

These specialization/generalization relationships correspond to what we know as
is-a vs. is-a-special-kind-of, resulting in a hierarchical arrangement of concepts>. In
ontologies that are more loosely defined, the hierarchy may, however, not be as explicit
as is-a relationships but rather correspond to the notion of narrower-than vs. broader-
than*

According to the international standard ISO 704, we provide names for the concepts
(and relations). Instead of ‘name’, we here call them ‘sign’ or ‘lexical entries’ to better
describe the functions for which they are used.

Definition 3 (Lexicon for an Ontology). A lexicon for an ontology O is a tuple Lex :=
(Sc, Refc) consisting of a set Sc, whose elements are called signs for concepts (sym-
bols), and a relation Refc C Sc x C called lexical reference for concepts, where
(¢,c) € Refec holds for all ¢ € C N Sc. Based on Refc, for s € So we define
Refco(s) := {c € C|(s,c) € Refc}. Analogously, for ¢ € C it is Ref,*(c) =
{s € Scl|(s,c) € Refc}. An ontology with lexicon is a pair (O, Lex) where O is an
ontology and Lex is a lexicon for O.

Ontologies for the experimental evaluation For the purpose of actual evaluation in the
experiments, we have used three different resources, namely WordNet, the MeSH Tree
Structures Ontology, and the AGROVOC ontology.

Although not explicitly designed as an ontology, WordNet [12] largely fits into
the ontology definitions given above. The WordNet database organizes simple words
and multi-word expressions of different syntactic categories into so called synonym
sets (synsets), each of which represents an underlying concept and links these through
semantic relations. The current version 2.0 of WordNet comprises a total of 115,424
synsets and 144,309 lexical index terms. The noun category, which was the main focus
of our attention®, contains nearly 70 % of the total synsets, links from 114,648 index
terms to 79,689 synsets in a total of 141,690 mappings. The collection of index terms in
WordNet comprises base forms of terms and their exceptional derivations. The retrieval
of base forms for inflected forms is guided by a set of category-specific morphological

3 Note that this hierarchical structure is not necessarily a tree structure. It may also be a directed
acyclic graph possibly linking concepts to multiple superconcepts at the same time.

* In many settings this view is considered as a very bad practice as it may lead to inconsistencies
when reasoning with ontologies. However, this problem does not arise in the context of this
work.

5 Beside the noun category, we have also exploited verb synsets, however, without making use
of any semantic links,
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transformations, which ensure a high precision in the mapping of word forms to index
words.

The MeSH Tree Structures Ontology is an ontology that has been compiled out of
the Medical Subject Headings (MeSH) controlled vocabulary thesaurus of the United
States National Library of Medicine (NLM). The ontology contains more than 22,000
concepts, each enriched with synonymous and quasi-synonymous language expres-
sions. The underlying hierarchical structure is in large parts consistent with real hy-
pernym relations but also comprises other forms of hierarchical arrangements. The on-
tology itself was ported into and accessed through the Karlsruhe Ontology and Semantic
Web Infrastructure (KAON) infrastructure®.

The third ontology that has been used is the AGROVOC Ontology, based on AGROVOC,
a multilingual agricultural thesaurus’ developed by the United Nations Food and Agri-
cultural Organization (FAO). In total, the ontology comprises 17,506 concepts from the
agricultural domain. The lexicon contains label and synonym entries for each concept
in English and six additional languages. The concept hierarchy in the AGROVOC ontol-
ogy is based on broader-term relationships thus not necessarily on strict superconcept
relations in some cases.

3 Conceptual Document Representation

To extract concepts from texts, we have developed a detailed process, that can be used
with any ontology with lexicon. The overall process comprises five processing steps
that are described in this section.

Candidate Term Detection Due to the existence of multi-word expressions, the mapping
of terms to concepts cannot be accomplished by querying the lexicon directly for the
single words in the document.

We have addressed this issue by defining a candidate term detection strategy that
builds on the basic assumption that finding the longest multi-word expressions that
appear in the text and the lexicon will lead to a mapping to the most specific concepts.
The candidate expression detection algorithm we have applied for this lookup procedure
is given in algorithm 18.

The algorithm works by moving a window over the input text, analyze the win-
dow content and either decrease the window size if unsuccessful or move the window
further. For English, a window size of 4 is sufficient to detect virtually all multi-word
expressions.

Syntactical Patterns Querying the lexicon directly for any expression in the window
will result in many unnecessary searches and thereby in high computational require-
ments. Luckily, unnecessary search queries can be identified and avoided through an
analysis of the part-of-speech (POS) tags of the words contained in the current window.
Concepts are typically symbolized in texts within noun phrases. By defining appropriate

6 see http://kaon.semanticweb.org/
7 S€e http://www.fao.org/agrovoc/
8 The algorithm here is an improved version of one proposed in [17].
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Algorithm 1 The candidate expression detection algorithm

Input: document d = {w1,w2,...,wn},
Lex = (Sc¢, Refc) and window size k > 1.
71
list L

index-term s
while : < n do
for j = min(k,n —i+ 1) to1do
S «— {wz s Wigj—1 })
if s € Sc then
save s in Lg
ie—i+j
break
else if ; = 1 then
ie—i+j
end if
end for
end while
return L

POS patterns and matching the window content against these, multi-word combinations
that will surely not symbolize concepts can be excluded in the first hand and different
syntactic categories can be disambiguated.

Morphological Transformations Typically the lexicon will not contain all inflected
forms of its entries. If the lexicon interface or separate software modules are capable
of performing base form reduction on the submitted query string, queries can be pro-
cessed directly. For example, this is the case with WordNet. If the lexicon, as in most
cases, does not contain such functionalities, a simple fallback strategy can be applied.
Here, a separate index of stemmed forms is maintained. If a first query for the inflected
forms on the original lexicon turned out unsuccessful, a second query for the stemmed
expression is performed.

Word Sense Disambiguation Having detected a lexical entry for an expression, this
does not necessarily imply a one-to-one mapping to a concept in the ontology. Although
multi-word-expression support and pos pattern matching reduce ambiguity, there may
arise the need to disambiguate an expression versus multiple possible concepts. The
word sense disambiguation (WSD) task is a problem in its own right [8] and was not the
focus of our work.

In our experiments, we have used three simple strategies proposed in [7] to process
polysemous terms:

— The ““all” strategy leaves actual disambiguation aside and uses all possible concepts.

— The “first” strategy exploits WordNet’s capability to return synsets ordered with respect to
usage frequency. This strategy chooses the most frequent concept in case of ambiguities.

— The ““context” strategy performs disambiguation based on the degree of overlap of lexical
entries for the semantic vicinity of candidate concepts and the document content as proposed
in [7].
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Generalization The last step in the process is about going from the specific concepts
found in the text to more general concept representations. Its principal idea is that if a
term like ‘arrythmia’ appears, one does not only represent the document by the concept
corresponding to ‘arrythmia’, but also by the concepts corresponding to ‘heart disease’
and ‘cardiovascular disease’ etc. up to a certain level of generality. This is realized by
compiling, for every concept, all superconcept up to a maximal distance h into the con-
cept representation. Note that the parameter h needs to be chosen carefully as climbing
up the taxonomy too far is likely to obfuscating the concept representation.

4 Boosting

Boosting is a relatively young, yet extremely powerful machine learning technique. The
main idea behind boosting algorithms is to combine multiple weak learners — classifica-
tion algorithms that perform only slightly better than random guessing — into a powerful
composite classifier.

Although being refined subsequently, the main idea of all boosting algorithms can
be traced to the first practical boosting algorithm, AdaBoost [4], which we will con-
centrate on in this paper. AdaBoost and related algorithms have proved to produce ex-
tremely competitive results in many settings, most notably for text classification [15].
At the beginning, the inner workings of boosting algorithms were not well understood.
Subsequent research in boosting algorithms made them rest on a well developed theo-
retical framework and has recently provided interesting links to other successful learn-
ing algorithms, most notably to Support Vector Machines, and to linear optimization
techniques [11].

AdaBoost The idea behind “boosting” weak learners stems from the observation that
it is usually much easier to build many simple “rules of thumb” than a single highly
complex decision rule. Very precise overall decisions can be achieved if these weak
learners are appropriately combined.

This idea is reflected in the output of the boosting procedure: for AdaBoost the
aggregate decisions are formed in an additive model of the form:

J(@) = sign(3" ahy(a))

with hy : X — {—1,1}, a4 € R, where «; denotes the weight of the ensemble
member k; in the aggregate decision and where the output values f(z) € {1,—1}
denote positive and negative predictions respectively. In such a model, AdaBoost has to
solve two questions: How should the set of base hypotheses h; be determined ? How
should the weights a; determined, i.e. which base hypotheses should contribute more
than others and how much ? The AdaBoost algorithm, described in algorithm 2 aims at
coming up with an optimal parameter assignment for A; and «.

AdaBoost maintains a set of weights D; over the training instances zi ... Z; . .. Zy.
At each iteration step £, a base classifier is chosen that performs best on the weighted
training instances. Based on the performance of this base classifier, the final weight
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Algorithm 2 The AdaBoost algorithm.

Input: training sample Strain = {(21,41),-- -, (Tn, yn)}
with (z;,1:) € X x {—1,1} and y; = f(z3),
number of iterations 7.
Initialize: D: (i) = = foralli =1,...,n.
fort =1to 7" do
train base classifier h; on weighted training set
calculate the weighted training error:

n
e = Y De() Iy (o) M

=1

compute the optimal update step as:

17615

o — 2l @
2 €t
update the distribution as:
) D, (7) et Vi he (@)
Desa(i) 20 3)
Zy
where Z; is a normalization factor to ensure that 3 . | Diy1(é) = 1
ifEt :00ret = %then
break
end if
end for
Result: composite classifier given by:
T
f(z) =sign (fSOft(x)) = sign (Z Oétht(a?)> )
t=1

parameter oy is calculated in equation (2) and the distribution weights Dy for the
next iteration are updated. The weight update in equation (3) assigns higher weights to
training instances that have been misclassified, while correctly classified instances will
receive smaller weights in the next iteration. Thereby, AdaBoost kind of “focusing in”
on those examples that are more difficult while the weight each base classifier receives
in the final additive model depends on its performance on the weighted training set at
the respective iteration step.

Weak Lerners for AdaBoost In theory, AdaBoost can be used with any base learner
capable of handling weighted training instances. Although the base classifiers are not
restricted to belong to a certain classifier family, virtually all work with boosting algo-
rithms has used the very simple class of decision stumps as base learners.

In this presentation, we focus on simple indicator function decision stumps of the
form:
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cifzd =1
h(z) = { —c else.

with ¢ € {—1,1}. A decision stump of this form takes binary features (e.g. word or
concept occurrences) as inputs. The index j identifies a specific binary feature whose
presence either supports a positive classification decision, i.e. ¢ = 1 or a negative deci-
sion, i.e. ¢ = —1.

5 Evaluation Metrics

A standard set of performance metrics is commonly used to assess classifier perfor-
mance which we will review shortly in this section.

Classification Metrics Given a set of test documents S = {z1,...,x,} with binary
labels {y1,...,yn} where y; € {—1,1} codes the membership in a class in question.
Given further a classifier f trained on an independent training set with f(z) € {—1,1}
indicating the binary decisions of the classifier. Then the test sample can be partitioned
into sets S = St U S, i.e. the set of positive and negative test documents. These
partitions can be decomposed further into § *=TPUFN and S~ = FPUTN with:
TN := {ZEZ S S|f<’61) =—1Ay; = —1} and F'N := {Iz € S|f(fL‘Z) =—1Ay; = 1}
called the sets of documents classified true positive, false positive, true negative and
false negative, often referred to as the classification contingency table.

Based on these definitions, different evaluation measures have been defined [18].
Commonly used classification measures in text classification and information retrieval
are the classification error, precision, recall and the Fjg measure:

1. Classification Error

N |FP| +|FN|
err(f,S) = TP |FP| + |TN| = [FN| )
2. Precision | |
. TP
pTeC(f,S) = m . (6)
3. Recall
Poy . TP
rec(f,S) = TP+ |FN| @)
4. F} measure
F1(f S) .= 2 prec(f,S) rec(f,S) (8)
’ prec(f, S) +T€C(fa S)
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Ranking Metrics The ensemble classifiers produced by AdaBoost are capable of re-
turning a real-valued output foo¢(x) € [—1,1]. The magnitude | fuoz:(2)| reflects the
“confidence” of the classifier in a decision and allows to rank documents. Consequently,
a parameterized classifier fk can be defined that returns f’k () = 1if fso #¢(x) ranks
among the first k documents and fk (z) = —1 otherwise. On this basis, values for preci-
sion and recall can be calculated and tuned with respect to different values of k. When
precision and recall coincide at some k, this value is called the break-even point (BEP).
It can be shown that this is necessarily the case at k = |ST|°.

Micro- and Macro Averaging To average evaluation results over binary classifications
on the per-class level, two conventional methods exist. The macro-averaged figures are
meant to be averages on the class level and are calculated as simple averages of the
scores achieved for the different classes. In contrast, micro-averaged figures are com-
puted by summing the cells of per-class contingency tables together and then computing
performance scores based on these global figures. These can consequently be seen as
averages on the document level.

Statistical Significance Tests Statistical significance tests are useful in order to verify
to which extent the claim of an improvement can be backed by the observations on the
test set. For the experiments we report in this paper, we focused on two statistical sig-
nificance tests, a sign test (“S-test”) and a paired t-test (“T-test”) on an improvement
of individual F} scores for the different classes that have been evaluated in each ex-
periment described in detail in [19]. Following common statistical practice, we have
required a significance level o = 0.05 is required for claiming an improvement to be
significant. The significance level of o = 0.01 was used for the claim that an improve-
ment was very significant.

6 Experiments

The focus of our evaluation experiments was directed towards comparing whether Ad-
aBoost using the enhanced document representation would outperform the classical
term representation.

6.1 Evaluation on the Reuters-21578 Corpus

A first set of evaluation experiments was conducted on the well-known Reuters-21578
collection. We used the “ModApte” split which divides the collection into 9,603 training
documents, 3,299 test documents and 8,676 unused documents.

? This follows from the fact that if there are m negative documents among the first |S™| docu-
ments in the ranked list, there must also be exactly m positive examples in the remainder of
the list, thus: F'P, = F'N; = m, which guarantees precision and recall to be equal according
to the formulas given above.
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Experimental Setup In the first stage of the experiment, terms and concepts were ex-
tracted as features from the documents in the training and test corpus. For terms, the
feature extraction stage consisted of the stages described in section 2, namely chunk-
ing, removal of the standard stopwords for English defined in the stopword list from the
SMART system containing 571 words '® and stemming using the porter stemming algo-
rithm, resulting in a total number of 17,525 distinct term features. Conceptual features
were then extracted for noun and verb phrases using WordNet as background ontology.
Different sets of concept features were extracted based on varying parameters for dis-
ambiguation strategy and maximal hypernym distance ranging from 10,259 to 27,236
distinct concept features.

In the next stage of the experiment, classification was performed using AdaBoost.
‘We performed binary classification on the top 50 categories containing the highest num-
ber of positive training documents. The number of boosting iterations for training was
fixed at 200 rounds for all feature combinations.

Results As a general finding, the results obtained in the experiments suggest that Ad-
aBoost typically achieves better classification for both macro- and micro-averaged re-
sults when used with a combination of term-based and concept-based features. Table
1 summarizes the results of the experiments for different feature types with the best
values being highlighted. The relative gains on the F value, which is influenced both
by precision and recall, compared to the baseline show that in all but one cases the
performance can be improved by including conceptual features, peaking at an relative
improvement of 3.29 % for macro-averaged values and 2.00 % for micro-averaged val-
ues. Moderate improvements are achieved through simple concept integration, while
larger improvements are achieved in most cases through additional integration of more
general concepts.

The results of the significance tests allow us to conclude that these improvements are
significant in at least half of the cases. In general, the improvements of macro-averaged
F are higher than with micro-averaging which seems to suggest that the additional
concepts are particularly helpful for smaller classes.

6.2 Evaluation on the OHSOMED Corpus

A second series of experiments was conducted using the OHSOMED collection, initially
compiled by Hersh et al. [6]. It consists of titles and abstracts from medical journals,
each being indexed with multiple MeSH descriptors. We have used the 1987 portion of
the collection containing a total of 54,708 entries. Two thirds of the entries were ran-
domly selected as training documents while the remainder was used as test set, resulting
in a training corpus containing 36,369 documents and a test corpus containing 18,341
documents.

Experimental Setup Term stems were extracted as with Reuters-21578 resulting in a
total number of 38,047 distinct features. WordNet and the MeSH Tree Structures On-
tology were used to extract conceptual features. For WordNet, noun and verb phrases

10 see ftp://ftp.cs.cornell.edu/pub/smart/english.stop
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macro-averaged (in percentages)
Feature Type Error| Prec| Rec| F; BEP
term 00.65(80.59(66.30(72.75 74.29
term & synset.first 00.64(80.66(67.39|73.43 75.08
term & synset.first.hyp5 00.60{80.67|69.57|74.71 74.84
term & synset.first.hypl0 | 00.62|80.43(68.40|73.93 75.58
term & synset.context 00.63|79.96|68.51|73.79 74.46
term & synset.context.hyp5| 00.62|79.48|68.34|73.49 74.71
term & synset.all 00.64(80.02|66.44|72.60 73.62
term & synset.all.hyp5 00.59(83.76|68.12|75.14 75.55

micro-averaged (in percentages)
Feature Type Error| Prec| Rec| F, BEP
term 00.65(89.12(79.82(84.21 85.77
term & synset.first 00.64|88.75|80.79(84.58 85.97
term & synset.first.hyp5 00.60|89.16|82.46|85.68 8591
term & synset.first.hypl0 | 00.62|88.78(81.74(85.11 86.14
term & synset.context 00.63(88.86|81.46(85.00 85.91
term & synset.context.hyp5| 00.62|89.09(81.40|85.07 85.97
term & synset.all 00.64(88.82|80.99(84.72 85.69
term & synset.all.hyp5 00.59(89.92(82.21(85.89 86.44

Table 1. Evaluation Results for Reuters-21578.

were considered while for the MeSH Tree Structures Ontology, only noun phrases were
considered.

For WordNet, the same disambiguation strategies were used as in the Reuters-21578
experiments. For the MeSH Tree Structures Ontology, only the “all” strategy was used
due to the observation that polysemy problems occur extremely rarely with this ontol-
ogy as descriptor terms are most naturally unique. For both ontologies, different de-
grees of depth were used for hypernym or superconcept integration, resulting in a total
of 16,442 to 34,529 synset features and 11,572 to 13,663 MeSH concept features.

On the documents of the OHSOMED dataset — as on Reuters-21578 — binary
classification with AdaBoost was performed on the top 50 categories that contained
the highest number of positive training documents. To cope with the on average larger
number of features and the much higher number of documents compared to the Reuters-
21578 corpus, the number of boosting iterations for all experiments with the OHSOMED
collection was set to 1000 rounds.

Results Different runs of the classification stage were performed based on the different
features, leading to often substantially different results. Again, the general finding is
that complementing the term stem representation with conceptual features significantly
improves classification performance.

Table 2 summarizes the macro- and micro-averaged results. The relative improve-
ments for the F scores compared to the term stem baseline are depicted in figure 6.2
for WordNet as background knowledge resource. These range from about 2% to a maxi-
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macro-averaged (in percentages)
Feature Type Error| Prec| Rec| F; BEP
term 00.53|52.60(35.74]42.56 45.68
term & synset.first 00.52{53.08|36.98|43.59 46.46
term & synset.first.hyp5 00.52{53.82|38.66|45.00 48.01
term & synset.context 00.52{52.83|37.09|43.58 46.88
term & synset.context.hyp5| 00.51/54.55(39.06|45.53 48.10
term & synset.all 00.52|52.89|37.09]43.60 46.82
term & synset.all.hyp5 00.52{53.33|38.24|44.42 46.73
term & mesh 00.52(53.65|37.56|44.19 4731
term & mesh.scl 00.52(52.91(37.59|43.95 46.93
term & mesh.sc3 00.52|52.77(38.06(44.22 46.90
term & mesh.sc5 00.52(52.72|37.57|43.87 47.16

micro-averaged (in percentages)
Feature Type Error| Prec| Rec| F; BEP
term 00.53|55.77(36.25|43.94 46.17
term & synset.first 00.52{56.07|37.30(44.80 47.01
term & synset.first.hyp5 00.52{56.84|38.76|46.09 48.31
term & synset.context 00.52{56.30|37.46|44.99 47.34
term & synset.context.hyp5| 00.51|58.10(39.18|46.81 48.45
term & synset.all 00.52|56.19|37.44144.94 47.32
term & synset.all.hypS 00.52|56.29|38.24/45.54 46.73
term & mesh 00.52(56.81(37.84|45.43 47.78
term & mesh.scl 00.52|56.00{37.90{45.20 47.49
term & mesh.sc3 00.52{55.87|38.26|45.42 47.45
term & mesh.sc5 00.52(55.94|37.94|45.21 47.63

Table 2. Evaluation Results for OHSOMED.

mum of about 7 %. The relative F} improvements when using the MeSH Tree Structure
Ontology, were on the 3% to 5% level in all cases.

The statistical significance tests revealed that in virtually all cases, these improve-
ments can be claimed to be significant and actually even very significant in most cases.

Again, the integration of conceptual features improved text classification results.
The relative improvements achieved on OHSOMED are generally higher than those
achieved on the Reuters-21578 corpus. This makes intuitively sense as the documents
in the OHSOMED corpus are taken from the medical domain. Documents from this
domain typically suffer heavily from the problems described in section 2, especially
synonymous terms and multi-word expressions. But this is only a first effect. The even
better results achieved through hypernym integration with WordNet indicate that also
the highly specialized language is a problem that can be remedied through integration
of more general concepts.

A comparison between WordNet and the MeSH Descriptor Ontology is hard. On
the one hand, without generalization, the domain specific MeSH Tree Structures On-
tology is able to achieve slightly better results. Taking into account that the extraction
was here bases solely on noun phrases and that WordNet’s coverage is much broader,
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Fig. 1. Relative Improvements of F; Scores on OHSOMED for combined Term-Synset Features
vs. Term Stems.

this is a positive surprise. On the other hand, WordNet achieves much better results
when generalization comes into play. In contrast to WordNet, superconcept integration
for MeSH does not really improve the results and varying levels of superconcept inte-
gration lead to similar or even worse results. Apparently, the broader-term relation of
the MeSH thesaurus is indeed not well suited to improve the results. Also note that in
contrast to the Reuters-21578 experiments, “context” word sense disambiguation strat-
egy performs best in combination with hypernym integration. Apparently, it is easier to
disambiguate polysemous words in the medical context.

6.3 Evaluation on the FAODOC Corpus

The third and last series of experiments uses a collection of documents from the FAO
Document Online Catalogue (FAODOC)'!, managed by the United Nations Food and
Agricultural Organization. The FAODOC database houses articles and other publica-
tions from the agricultural domain together with metadata information, including sub-
ject and category elements.

Experimental Setup The FAODOC collection contains English, French and Spanish
HTML documents. All documents are indexed with one or multiple category codes,
each of which refers to one of 115 FAODOC subject categories. In the experiments,
only the subset of 1,501 English documents has been used where each of the categories
has at least 50 positive documents, resulting in 21 distinct subject categories. From
the total number of 1,501 documents, the first 1,000 documents were used for training
while the remainder of 501 documents were held out as test set. The FAODOC dataset
is very different from the other datasets encountered so far. Besides being taken from

1 see http://wwwi.fao.org/faobib/index.html
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macro-averaged

Feature Type Error| Prec| Rec| F;| BEP
term 06.87|45.47|27.11|33.97|36.93
term & agrovoc 06.66(50.96|28.63|36.66(39.84
term & agrovoc.scl| 06.76|49.26|27.48|35.28|39.40
term & agrovoc.sc3| 06.79|49.08|30.41|37.55|41.69

micro-averaged
Feature Type Error| Prec| Rec| F;| BEP
term 06.87(50.44|31.22|38.57|44.29
term & agrovoc 06.66|52.91|32.46|40.24|48.01
term & agrovoc.scl| 06.76|51.75|32.60|40.00(46.77
term & agrovoc.sc3| 06.79(51.47|31.36|38.97|47.73

Table 3. Results on FAoDoC

a different domain, the total number of documents is much smaller. The documents in
the FAODOC dataset are typically much larger in size, ranging from 1.5 kilobytes to
over 600 kilobytes, which is also reflected in the resulting feature representations with
68,608 word stems. Besides the extraction of term stems as usual, conceptual features
were extracted again, this time using the AGROVOC ontology as background knowledge
resource. For both types of features, the documents were first converted from HTML to
plain text, then proceeding in the same way as with the documents in the other corpora.

As in the other experiments, each of the 21 different labels resulted in a binary clas-
sification run of its own, each time using AdaBoost as learning algorithm with decision
stump classifier based on the binary feature weights as base learners. The chosen num-
ber of 500 boosting iterations is based on a trade-off between the smaller number of
training documents on the one hand and a typically larger size per document on the
other. In all experiments, the results on the 21 individual labels were eventually macro-
and micro-averaged.

Results Different runs of the classification stage were performed based on different
features: term stems and again combinations of both types of features.

Table 3 summarizes the results of the experiments with the FAODOC for the differ-
ent feature representations, evaluation metrics and averaging variants. For each perfor-
mance metric, the best result is highlighted. Again, combinations of terms and concepts
as features also achieve considerable improvements over the classic term stem repre-
sentation in all scores, most notably with respect to precision.

Figure 2 undermines the good performance of the term and ‘agrovoc’ concept rep-
resentation achieving an impressive relative improvement of 10.54 % on the macro-
averaged Fj value compared to the ‘term’ representation. The relative improvement on
the micro-averaged Fj lies at 4.33 %.

As with OHSOMED, one observes a heavy discrepancy between the macro- and
micro-averaged scores. Again, macro-averaged performance gains are higher than those
for micro-averaging, which makes sense taking into account the fairly unequal category
sizes. In contrast to the other experiments, the amount of deviation however varies con-
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Fig.2. Bar Chart Illustration of the Relative Improvements of F Scores on all 21 FAoDocC
Categories for combined Term-Concept Representations vs. ‘term’. All numbers are percentages.

siderably among the different feature representations. Furthermore, the question which
superconcept integration depth leads to the best improvement cannot be answered easily
because the effects vary between micro- and macro-averaging. We attribute the strong
variation in the results to the fact that random effects are much likelier compared to
the other experiments as the number of training and test documents was considerably
smaller.

7 Related Work

Representing document content through metadata descriptions is a well-known task
in the semantic web context, also known as annotation[5]. Typically, however, this is
a semi-automatic task that aims at precise metadata descriptions and not at creating
features for machine learning algorithms.

To date, the work on integrating semantic background knowledge into text classi-
fication or other related tasks is quite scattered. Much of the early work with semantic
background knowledge in information retrieval was done in the context of query ex-
pansion techniques [1]. Feature representations based on concepts from ontological
background knowledge were also used in text clustering settings [7] where it could be
shown that conceptual representations can significantly improve text cluster purity and
reduce the variance among the representations of related documents.

Recent experiments with conceptual feature representations for text classification
are presented in [17]. These and other similar published results are, however, still too
few to allow insights on whether positive effects can be achieved in general. In some
cases, even negative results were reported. For example, a comprehensive comparison
of approaches based on different word-sense document representations and different
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learning algorithms reported in [10] ends with the conclusion of the authors that “the
use of word senses does not result in any significant categorization improvement” .

Alternative approaches for conceptual representations of text documents that are
not based on background knowledge compute kind of “concepts” statistically. Very
good results with a probabilistic variant of LSA known as Probabilistic Latent Seman-
tic Analysis (pLSA) were recently reported in [3]. The experiments reported therein
are of particular interest as the classification was also based on boosting combined
term-concept representation, the latter being however automatically extracted from the
document corpus using pLSA.

8 Conclusions

In this paper, we have proposed an approach to incorporate concepts from background
knowledge into document representations for text document classification. A very suc-
cessful ensemble learning algorithm, AdaBoost, was proposed to perform the final clas-
sifications based on the classical word vector representations and the conceptual fea-
tures. Boosting Algorithms, when used with binary feature representations, scale well
to a large number of dimensions that typically occur when superconcepts are used as
well. At the same time, AdaBoost is capable of integrating heterogenous features that
are based on different paradigms without having to adjust any parameters in the feature
space representation.

Experiments on three different datasets clearly showed that the integration of con-
cepts into the feature representation clearly improves classification results. The absolute
scores achieved on Reuters and OHSOMED are highly competitive with other published
results and the reported relative improvements appear to be statistically significant in
most cases. A comparative analysis of the improvements for different concept integra-
tion strategies revealed that two separate effects lead to these improvements. A first
effect that can be mainly attributed to multi-word expression detection and synonym
conflation is achieved through the basic concept integration. A second effect building
on this initial improvement is attributed to the use of the ontology structures for gener-
alization through hypernym retrieval and integration.

Outlook The experiments that have been conducted show that the presented approach
appears to be promising in most settings. However it has also become obvious that
the results depend on the specific constellation of parameters. These include — most
importantly — the choice of the appropriate ontology. Further research and experiments
should investigate how the specific choice and setup of the used ontologies can lead
to even better results and wether other concept extraction strategies lead to a further
improvement in classification performance.

Further attention should also be paid to the setup of the classification algorithm as
the general nature of AdaBoost would allow to integrate more advanced weak learners.
Such weak learners might also exploit background knowledge even more directly.

Acknowledgements This research was partially supported by the European Commission un-
der contract FP6-001765 aceMedia. The expressed content is the view of the authors but not
necessarily the view of the aceMedia project as a whole.
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Learning Similarities for Collaborative
Information Retrieval
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Abstract. The accuracy of ad-hoc information retrieval (IR) systems
has plateaued in the last few years. At DFKI, we are working on so-
called collaborative information retrieval (CIR) systems which have the
potential to overcome the current limits. We focus on a restricted setting
in CIR in which only old queries and correct answer documents to these
queries are available for improving a new query. For this restricted setting
we propose new approaches for query expansion procedures. We show
how collaboration of individual users can improve overall information
retrieval performance.

In our first steps towards techniques, we proposed new algorithms for
query expansion in CIR systems. Now in this paper we focus on learning
similarity measures. We do not try to invent new similarity measures,
but learn weighting schemes to be applied to the standard cosine sim-
ilarity measure. After learning the new weightings we re-evaluate our
previously proposed CIR algorithms on standard IR test collections. It
turns out that retrieval performance of previously developed algorithms
is improved after learning the weightings for the involved similarity mea-
sure.

1 Introduction

In this section we introduce the research area of Collaborative Information Re-
trieval (CIR). We motivate and characterize the primary goals of this paper,
query expansion procedures for CIR and outline the structure and contents.

The ultimate goal in IR is finding the documents that are useful to the
information need expressed as a query. Much work has been done on improving
IR systems, in particular in the Text Retrieval Conference series (TREC). In
2000, it was decided at TREC-8 that this task should no longer be pursued
within TREC, in particular because the accuracy has plateaued in the last few
years [13]. We are working on new approaches which learn to improve retrieval
effectiveness from the interaction of different users with the retrieval engine.
Such systems may have the potential to overcome the current plateau in ad-hoc
retrieval.

CIR is a methodology where an IR system makes full use of all the additional
information available in the system, especially

— the information from previous queries
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— the relevance information gathered during previous search processes, inde-
pendent of the method used to obtain this relevance information, i.e., ex-
plicitly by user relevance feedback or implicitly by unobtrusively detected
relevance information.

Collaboration here assumes that users can benefit from search processes car-
ried out at former times by other users (although they may not know about
the other users and their search processes) as long as the relevance information
gathered from these previous users has some significant meaning.

Subject to these assumptions we expect that collaborative searches will im-
prove overall retrieval quality for all users.

We are aware of the problems of ”personalization” and ”context”, but in our
first steps towards techniques we avoid further complexity of CIR by ignoring
these challenges. ” Personalization” means that different users may have different
preferences on relevant documents, because of long-term interests; ”context”
means that different users may have different preferences on relevant documents,
because of short-term interests.

This paper is organized as follows: Section 2 describes related work in the
field of query expansion, section 3 introduces the vector space model and query
expansion procedures that have been developed for use in the vector space model.
Section 4 describes the method for learning similarity functions and describes
one of the functions in detail. Then section 5 describes the document collections
we have used for evaluating our new algorithms and describes the evaluation
methodology, section 6 describes the results of the evaluation. Finally section 7
summarizes this paper, draws some conclusions, and shows the essential factors
for improving retrieval performance in CIR.

2 Related Work

Usage of short queries in IR produces a shortcoming in the number of docu-
ments ranked according to their similarity to the query. Thus IR systems try to
reformulate the queries in a semi-automatic or automatic way. Several methods,
called query expansion methods (QE), have been proposed to cope with this
problem [3], [10]. These methods fall into three categories: usage of feedback
information from the user (e.g. interactive QE), usage of information derived
locally from the set of initially retrieved documents, and usage of information
derived globally from the document collection. The goal of all QE methods is
to finally find the optimal query which selects all the relevant documents. A
comprehensive overview of newer procedures is available from Efthimiadis in [6].
Another newer technique, called local context analysis (LCA), was introduced
by Xu and Croft in [15].

Newest procedures in the field of query expansion are dealing with query
bases, a set of persistent past optimal queries, for investigating similarity mea-
sures between queries (refer to Raghavan, Sever and Alsaffar et al. in [11], [12]
[2]). Wen et al. [14] are using query clustering techniques for discovering fre-
quently asked questions or most popular topics on a search engine. This query
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clustering method makes use of user logs which allows to identify the documents
the users have selected for a query. The similarity between two queries may be
deduced from the common documents the users selected for them ([4]). Cui et
al. [5] take into account the specific characteristics of web searching, where a
large amount of user interaction information is recorded in the web query logs,
which may be used for query expansion. Agichtein et al. [1] are learning search
engine specific query transformations for question answering in the web.

3 Basics and Terminology

In this section we introduce the vector space model (VSM) which is employed
in our work. We introduce the pseudo relevance feedback method for query
expansion and two of our newly developed methods for CIR.

Vector Space Model Documents as well as queries are represented in a com-
mon way using a set of terms. Terms are determined from words of the docu-
ments, usually during preprocessing phases (e.g. stemming and stopword elim-
ination). In the following a term is represented by t;, 1 < i < M, where M is
the number of terms in the document collection.

The vector space model assigns weights to terms in queries and in documents
and represents them as M dimensional vectors

dj = (wlj,ng, ...,wMj)T, 1 S j S ]\/v7 (1)
@k = (Wi, Wak, o wye), 1<k <L, (2)

where T' indicates the transpose of the vector, w;; or w; is the weight of term ¢;
in document d; or query g, N is the number of documents and L is the number
of queries contained in the document collection.

The result of the execution of a query is a list of documents ranked according
to their similarity to the given query. The similarity sim(d;,qx) between a doc-
ument d; and a query g is measured by the cosine of the angle between these
two M dimensional vectors:

i - qi
sim(dj, qx) = —2———, (3)
! 1l - lla |
where || - || is the Euclidean norm of a vector. In the case that the vectors are

already normalized (and hence have a unit length) the similarity is simply the
dot product between the two vectors d; and g.

Query Expansion by Pseudo Relevance Feedback (PRF) After retrieval
of the list of documents (in a first stage) highly ranked documents are all assumed
to be relevant [15] and their terms (all of them or some highly weighted terms)
are used for expanding the original query. Then documents are ranked again
according to their similarity to the expanded query.

In this work we employ a variant of pseudo relevance feedback described by
Kise et al. [9]. In our comparison with the newly developed methods, we will use
the PRF method.
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Let E be the set of document vectors given by

o {dj sim(d;, gk ) y > 9} (4)

maxi <;<ny{sim(d;, qx
where g is the original query and 6 is a threshold parameter of the similarity.
Then the sum Dy of the document vectors in E, D = ZdjeE d; is used as

expansion terms for the original query. The expanded query vector gj, is obtained
by
’ Dy,

G = O (5)
where « is a parameter for weighting the expansion terms. Then the documents
are ranked again according to their similarity sim(d;, q;,).

Parameters 6 in Equation 4 and « in Equation 5 are tuning parameters. Dur-
ing evaluation best parameter value settings have been obtained by experiment
and those which give the highest average precision were selected for comparison
against other methods.

Query Expansion by Methods developed for CIR In our approaches we
use global relevance feedback which has been learned from previous queries; this
is in contrast to local relevance feedback which is produced during execution of
an individual query. All our new query expansion procedures work as follows:

— for each new query to be issued compute the ry
similarities between the new query and each !
of the existing old queries

— select the old queries having a similarity to
the new query which is greater than or equal
to a given threshold

— from these selected old queries get the sets of
relevant documents from the ground truth
data

— from this set of relevant documents compute
some terms for expansion of the new query

— use this terms to expand the new query and issue the new expanded query

----P Existing old queries
new query
[ J Nearest neighbors

Fig.1. Motivation for CIR
methods: usage of the nearest
neighbors

The algorithmic description is given here:
for each new query ¢ do
compute the set S = {qg|sim(qx,q) > 0,1 <k <L}
compute the sets RDy = {d;|qr € SAd; is relevant to qi}
compute the expanded query ¢’ = cirf(q, S, RDy)
end
where S is the set of existing old queries g; with a similarity of ¢ or higher
to the new query g, RDy are the sets of the documents being relevant to the
queries g and cirf is a function for query expansion.
The goal now is to find suitable functions cir f which can be efficiently com-
puted and which maximize the effectiveness of the new query ¢’ in terms of recall
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and precision. As is shown in figure 1 our approach is searching for neighbors
of the new query. If suitable neighbors of a query ¢ within a given distance are
found, we try to derive information about the documents which are relevant to
q from its nearest neighbors.

These functions introduce a new level of quality in the IR research area:
while the term weighting functions such as tf-idf only work on documents and
document collections, and relevance feedback works on a single query and uses
information from their assumed relevant and non-relevant documents only, CIR
now works on a single query, and uses the information of all other queries and
their known relevant documents.

Methods Description. Due to lack of space we describe the methods infor-
mally very short. For detailed description and evaluation we point the reader to
the referenced papers and articles.

Query Similarity and Relevant Documents. Method QSD ([7]) uses the relevant
documents of the most similar queries for query expansion of a new query. The
new query is rewritten as a sum of selected relevant documents of existing old
queries, which have a high similarity to the new query, i.e.,

Ell

RDy,
!
=9+ ) Okisr (6)
Z; | RDy ||

where |S] is the number of selected queries, oy, are the similarities sim(qx,q) > o
(o is the threshold value) and RDy, are the sets of relevant documents.

Query Linear Combination and Relevant Documents. Method QLD ([8]) uses
the relevant documents of the most similar queries, which are used in re-writing
the new query as a linear combination of the most similar queries. This query
expansion method reconstructs the new query as a linear combination of existing
old queries. Then the terms of the relevant documents of these existing old
queries are used for query expansion, i.e.,

- R
¢ =q+> Mrpo (7)

where the \; are parameter for weighting the expansion terms. The e are
computed as follows: in most cases we cannot represent the new query ¢ exactly
as a linear combination of the old queries g, i.e., ¢ = ‘ks:‘l A:qr Will not have a
solution for the coefficients Ax. This equation is equivalent to a system of linear
equations QA = ¢, where @ = (q1,92,...,¢s|) is a matrix of M rows and |S]
columns and A = (A1, A2, ..., Ajg) is a column vector consisting of | S| elements.
Because @ is normally singular (M > |S|) and there is no solution to the system,
we find a vector \ so that it provides a closest fit to the equation in some sense.
Our approach is to minimize the Euclidean norm of the vector QX — ¢, i.e we
solve R

A = argmin,[|QX — g (8)

where \ = ():1, /\~2, e, )\|~S‘)T is called the least squares solution for the system
QA=gq.
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Limiting Factors in CIR Performance Similarities of Queries to Docu-
ments. One of the limiting factors for CIR retrieval performance is the similarity
between the query and its non-relevant documents (as it is for non-CIR retrieval
performance).

225 Queries Mean: 0.15 Std: 0.08 Var: 0.01 Median: 0.13 InteT—Query Similarities. In our
800 L ¥ T T T T T T T
= mean value 3 i M 3 3
T meanvaue || considerations for usage of similari-
700 == mean—stddev. [ tieg between different queries for re-

trieval performance improvements,
we decided to analyze the inter-que-
ry similarities. We did not expect
to have queries having highly cor-
related similarities as we would ex-
pect in real world applications.

Indeed, the histograms show very
low inter-query similarity for most

600

500+

frequency
n w B
o o (=]
o o o
T T

o
S
T

0 T T S S— of the text collections. Figure 2 dis-
0 o1 02 03 04 05 06 07 08 09 1 o . i
query similarity plays the distribution of the inter-
Fig. 2. CRAN: distribution of query simi- query similarity, excluding those
larities similarities which are 0. Also the

mean and the median value as well
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vertical lines are: the mean similarity (solid line), and the values of the mean
similarity + the standard deviation (dotted lines).

Overlap of Relevant Documents. An- CACM Overlap of Refovant Documents
other limiting factor for our CIR methods
is some ”overlapping” in relevant docu-
ments for different queries. We define the
overlap of relevant documents as follows: 4
Let gx,qt € Q, k # 1 be two different
queries. Let RDj, and RD; be the sets of
documents which are relevant to queries
qr and ¢; respectively. Then the overlap of
relevant documents for these two queries — qey 5

. . 20
is the number of documents in the set ey

Ow = RDp N RDy = {d;| dj € RD A Fig. 3. CACM: overlap of relevant
dj € RD;}. We expect retrieval perfor- . cuments

mance improvements if the overlap of rel-
evant documents is high.

4 Learning Similarity Functions

The motivation for learning similarity functions arises from the achieved perfor-

mance improvements of our query expansion methods QSD and QLD.
Similarity between queries as it is used up to now is solely based on syntactical

elements. Although we have used some normalization and cleaning operations
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(stemming and stop-word-elimination) there is no further processing beyond the
syntactical level. Similarity between two queries is high if they use the same
words. Similarity is low if they use different words.

The same information need can be expres-
sed in different queries, having a low sim-
ilarity, although they are querying for the
same facts and thus may have the same rele-
vant documents. However, the methods de-
veloped up to now only use the inter-query
similarity on the syntactical level, they do
not consider the information need of the
user. Figure 4 illustrates the proposed ef- %22_---
fect of learning, where the area of nearest
neighborhood may change dramatically if
the newly learned similarity functions are
applied. In this way we can identify queries
as nearest neighbors of a new query, even if they are far away (according to the
standard cosine-similarity) from the new query.

----J existing old queries
new query

nearest neighbors
after learning

Fig.4. Motivation for Learning
Similarities: area of nearest neigh-
bors changes dramatically

The Learning Problem We now formulate the learning of similarity functions
as a minimization problem.
We measure the similarity of sets of relevant documents by

dsimy; := sim(rdy, rd;), 9)

where sim(-, -) is defined in Equation 3, and rd; are the summarized and centered
document vectors consisting of the relevant documents of query ¢;, i.e.,

1

and the similarity between queries by
gsimy, (z) := sim(g(z, qk), h(z, q1)) (11)

where x is a vector of weights to be applied against the queries g, and/or ¢; with
some functions g and h, each returning an M-dimensional vector which can be
fed into the standard cosine similarity measure described in Equation 3.

The motivation for learning the weights for similarity functions is as follows:
If the similarity between two different vectors rdy, rd; is high, then the similarity
between the two queries g, ¢; having these document vectors assigned as relevant
documents should be high. If the similarity between vectors rdy, rd; is low, then
the similarity between the corresponding two queries should be low. This directly
leads to the functions fx;, 1 < k,l < L to be minimized as

fri(x) = gsimy, (z) — dsimy, (12)
and considers all pairs of queries. Let F' be a vector-valued function consisting of

L? functions, where each of these functions uses an M dimensional input vector
T, i.e.,
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F:RM - RY
(w1, 2, an)” = (fr(@), fr2(@), s fra(@), -+ foo(@)” (13)
Then we can state our learning problem as

L
)T = argming||F(z)|?* = argmin, Z fra(2)? (14)
k=1

$=($171‘2,"' s TM

i.e., we are searching for a vector & that minimizes the Euclidean norm of the
function F.

The Similarity Functions The goal is to find reasonable functions gsim,,;(x)
which give us significant performance improvements for IR whilst having a mod-
erate computational complexity both in the learning process as well as during
the application of the similarity measure in the query expansion methods QSD
and QLD.

We have developed 9 reasonable functions. Due to lack of space we describe
only one of them here.

Similarity Function F2 We first define the component-wise multiplication of
the individual components of two vectors, denote it by % and use it in infix-

notation: % R" x R" — R™
$*y = ($1,I2, e 7xn)T>i<<y17y2a e ayn)T = (mlyla T2Y2, - axnyTL)T

Then we define the new similarity function using the weights to be learned and
denote it by a superscript

qsimz, (z) = sim(qg, T%q) (15)

leading to our minimization problem
L

& = argming Z (qsim3, (z) — dsimy;)? (16)
k=1

5 Experimental Design

We use standard document collections and standard queries and questions pro-
vided by the SMART project and the TREC conferences. In addition we use
some special collections that we have generated from the TREC collections to
show special effects of our algorithms. In our experiments we used the following
10 collections:

— the SMART collections ADI, CACM, CISI, CRAN, MED and NPL.

— the TREC QA (question answering) collection prepared for the Question
Answering track held at the TREC-9 conference, the QA-AP90 collection
containing only those questions having a relevant answer document in the
AP90 (Associated Press articles) document collection, the QA-AP90S col-
lection (extracted from the QA-AP90 collection) having questions with sim-
ilarity of 0.65 or above to any other question, and the QA-2001 collection
prepared for the Question Answering track held at the TREC-10 conference.
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On the one hand by utilizing these collections we take advantage of the
ground truth data for performance evaluation. On the other hand we do not
expect to have queries having highly correlated similarities as we would expect
in a real world application. So it is a challenging task to show performance
improvements for our methods.

Preparation of the Text Collections Terms used for document and query
representation were obtained by stemming and eliminating stopwords. Then doc-
ument and query vectors were created according to the so called tf-idf weighting
scheme, where the document weights d;; are computed as

dij = \/fij - idfi (17)

where f;; is the raw frequency of term ¢;, idf; is the inverse document frequency
log nﬂ of term t;, and the query weights ¢;; are computed as

qik =V fik (18)
where f;; is the raw frequency of term ¢; in a query gx.

Properties of the Text Collections Table 1 lists statistics about the collec-
tions after stemming and stopword elimination has been carried out; statistics
about some of these collections before stemming and stopword elimination can
be found in Baeza-Yates [3] and Kise et al. [9].

ADI [CACM] CISI [CRAN|MED| NPL | QA | QA- | QA- | QA-

AP90 |AP90S| 2001

size(MB) 0.1 1.2 1.4 1.4 1.1 3.8 28.2 3.7 3.7 20.1
number of documents 82 3204 | 1460 | 1400 | 1033 | 11429 | 6025 723 723 4274
number of terms 340 3029 | 5755 | 2882 | 4315 | 4415 | 48381 | 17502 | 17502 | 40626
mean number of terms| 17.9 18.4 | 38.2 | 49.8 | 46.6 | 17.9 | 230.7 | 201.8 | 201.8 | 220.5
per document (short)|(short) | (med)| (med) | (med) |(short)| (long) | (long) | (long) | (long)

number of queries 35 52 112 225 30 93 693 353 161 500

mean number of terms| 5.7 9.3 23.3 8.5 9.5 6.5 3.1 3.2 3.5 2.7
per query (med) | (med) |(long)| (med) |(med)| (med) |(short)|(short) |(short)|(short)

mean number of relev.| 4.9 15.3 | 27.8 8.2 23.2 | 224 16.4 2.8 3.2 8.9
documents per query| (low) | (med) |(high)| (med) |(high)| (high) | (med) | (low) | (low) | (med)

Table 1. Statistics about the test collections

Methodology of Evaluation The numerical methods used for function mini-
mization do not guarantee that they will find a global minimum of the function.
However they will find a local minimum in an area surrounding the initial start
value. Thus we did the same experiment several times with different initial val-
ues.

The result of each experiment was the vector . We then fed these values into
the QSD and QLD methods using the similarity measure qsimi;(z) as defined
in Equation 15 for the query expansion methods.

The evaluation follows the ”leave one out” technique used in several areas
such as document classification, machine learning etc. From the set of L queries
contained in each text collection we selected each query one after the other and
treated it as a new query ¢;, 1 <[ < L. Then for each fixed query ¢; we used the
algorithm as described in section 3. Of course the now fixed query ¢; itself does
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not take part in the computation of the query expansion. We varied parameters
of the algorithms according to suitable values, and selected those parameters
where highest performance improvements (in terms of average precision over all
queries) were achieved.

6 Results

The methods are denoted by adding the name of the learned similarity function
to the basic name, i.e., QSDF2 denotes the QSD method after learning similarity
function F2 using the similarity measure qsim7,(z) as defined in Equation 15.

Interpolated Average Precision Table 2 shows the interpolated average pre-
cision obtained by using the best parameter values for different methods. For each
collection the best value of average precision is indicated by bold font, the sec-
ond best value is indicated by italic font. In those cases, where our new methods
outperform the PRF method, the value is underlined.

ADI [CACM]| CISI [CRAN|MED| NPL | QA | QA- | QA- | QA-
AP90 |AP90S| 2001
VSM | 0.375] 0.130 |0.120] 0.384 | 0.525| 0.185 | 0.645 | 0.745 | 0.643 | 0.603
PRF |0.390] 0.199 |0.129]| 0.435 |0.639(0.224|0.685 | 0.757 | 0.661 |0.614
QSD |0.374| 0.237 |0.142| 0.428 |0.503 | 0.184 | 0.727 | 0.810| 0.786 | 0.603
QSDF2|0.453| 0.293 |0.184] 0.465 |0.525|0.202|0.753|0.818| 0.796 | 0.604
QLD |0.369] 0.227 |0.171| 0.436 |0.507 | 0.185 | 0.734 | 0.812 | 0.789 | 0.603
QLDF2(0.436| 0.286 |0.182| 0.465 |0.525|0.196 |0.754|0.818| 0.798 | 0.604

Table 2. Interpolated average precision in CIR methods

Significance Testing Significance tests were applied to the results. Table 3
shows the results. Each row contains the results of two tests, i.e., test method
X against method Y and vice versa.
— The indicator +4 (+) shows that method X is performing better than
method Y at significance level o = 0.01 (v = 0.05).
— The indicator o shows that there is low probability that one of the methods
is performing better than the other method.
— The indicator —— (—) shows that method Y is performing better than
method X at significance level o = 0.01 (a = 0.05).

[ methods [ADI[CACM[CISI[CRAN|MED|NPL[QA[ QA-| QA- [QA-
X Y AP90|AP90S|2001
PRF [VSM| + [ ++ [++]| ++ [ ++ [++[++] + o |++
QSD |PRF]| o o o o —— — |4+] ++ NENT -
QSDF2|PRF | ++4| ++ |++]| + | —— 4|+ |+ | =
QSDF2|QSD| + | ++ |++| ++ o | + |++| + o o
QLD |PRF| o o [++[ o [—|—[|++++] ++ [—
QLDF2|PRF | ++ + ++ + — — |4+] ++ ++ | ——
QLDF2|QLD| ++| ++ o ++ o o |+4+| o o o

Table 3. Paired t-test results for significance levels a = 0.05 and o = 0.01

Relative Performance Improvements Table 4 shows the relative perfor-
mance improvements for different methods. The ratio of improvement is com-
puted as follows: let X be the average precision obtained by one of the methods
and let Y be the average precision obtained by another method. Then the ratio
is calculated by ratio = % A positive value for the ratio indicates an im-
provement of method X over method Y, a negative value indicates a degradation

in average precision from method X to Y.
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methods ADI[ CACM| CISI[CRAN| MED| NPL QA] QA | QA QA-
X Y AP90| AP90S| 2001
QSD |PRF| -4.0%|+18.8%| +9.8%| -1.7%]|-21.3% |-17.8%| +6.1%|+6.9%|+18.8%]| -1.8%
QSDF2|PRF |+10.9%]|+47.0%| +42.2%| +6.3%|-17.9%| -9.7%|+10.0%|+8.0% |+20.4%| -1.7%
QSDF2|QSD |+15.5%|423.7%|+29.6%| +8.2%| +4.3%| +9.9%| +3.6%|+1.0%| +1.3%|+0.1%
QLD |PRF| -5.5%|+14.1%|+32.3%]| +0.1%]|-20.7%|-17.2%| +7.2%|+7.2%|+19.3%| -1.8%
QLDF2|PRF |+11.9%|+43.5% |+40.8%| +6.8%|-17.8% |-12.5% | +10.1%| +7.9% | +20.6% | -1.6%
QLDF2|QLD |+18.3% | +25.7%| +6.5%|+6.7%| +3.6%|+5.7%| +2.7%|4+0.7%| +1.1%|+0.2%

Table 4. Average precision improvement in different methods

Analysis of the Results From the average precision analysis we see that the
QSDF2 method and the QLDF2 method perform best and second best in most
cases. In all cases they also perform better than the basic method before learning.

For the MED and NPL text collections, the basic methods QSD and QLD
do not perform better than the PRF method, nor do any of the methods after
learning. We think that, in the case of the MED collection, this effect comes from
the missing overlap of relevant documents, and in the case of the NPL collection
from the high similarity of non-relevant documents to the queries.

In all but in one case we observe performance improvements after learn-
ing compared to the basic methods without learning. The highest performance
improvement achieved is +40.3% (for the CACM collection). Only for the QA-
2001 collection we observe a performance degradation for one method of -0.1%
after learning; it should also be noted that for this collection the performance
improvements achieved after learning are the lowest of all collections.

7 Conclusions

We have studied learning methods for improving retrieval performance in a re-
stricted CIR environment where information about relevant documents from
previous search processes carried out by several users is available for the current
query.

Specifically, we developed, evaluated and analyzed new algorithms for query
expansion, since query expansion methods are known to be successful in improv-
ing retrieval performance.

Results of the newly developed methods are encouraging. Retrieval perfor-
mance improvements were achieved in most cases. For some text collections no
significant retrieval performance improvements could be achieved, neither in the
basic methods nor in applying the methods after learning similarity functions.
We identified three essential factors for retrieval performance improvements:

— similarity between queries, also called inter-query similarity: we can not
achieve performance improvements, if there are no pairs of queries with high
similarities

— similarity of queries to their relevant documents and non-relevant documents:
precision decreases, if non-relevant documents are ranked higher than rele-
vant documents

— the overlap of relevant documents for pairs of queries: if there is no or low
overlap in relevant documents, there are no document terms which are used
for query expansion

53



54

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

We think that the first factor is the most important for our CIR methods.
Best performance improvements have been achieved in text collections where
the inter-query similarity is high, although the overlap in relevant documents is
not high. Low or no retrieval performance improvements were achieved in those
cases were the inter-query similarity is on average low.

For text collections, where similarity of queries to their non-relevant docu-
ments is high on average, we achieved low performance improvements.

For text collections, where the overlap of relevant documents is low or where
no overlap in relevant documents exists, we did not achieve performance im-
provements, neither in the basic methods nor in the methods that have been
applied after learning.
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Abstract. We study methods to initialize or bias different clustering
methods using prior information about the “importance” of a keyword
w.r.t. to the specific clusters. These studies give us hints on how to
initialize clustering methods in order to improve the clustering perfor-
mance if prior knowledge is available. This can be especially useful if a
user-specific clustering of a document collection or web search result set
is desired.

1 Introduction

The problem of finding descriptive weights for terms in document collections in
order to improve retrieval performance has been studied extensively in the past
(see, for instance, [12,24, 23]). To achieve an improved classification or clustering
performance for a given text collection, it is usually necessary to select a subset
of all describing features (i.e. keywords) and/or to re-weight the features w.r.t.
a specific classification or clustering goal. Consequently, several studies were
conducted in this direction. For example, it was explored how to select keywords
based on statistical and information theoretical measures [9,21,28] or how to
combine clustering and keyword weighting techniques [10] in order to improve
the clustering performance.

In prior work we studied different hard and fuzzy clustering methods with and
without variances [5]. These experiments indicated that the use of variances—
which can be considered as a method for cluster specific keyword weighting—
can improve the clustering performance. Nevertheless, it is still unclear to what
extent term re-weighting influences the clustering performance and whether
initial—global or cluster specific—term re-weighting can be used to bias or im-
prove the performance. Therefore, in the following, we compare clustering with
and without term re-weighting techniques using different hard and fuzzy clus-
tering methods.

This paper is organized as follows: In Section 2 we briefly review some basics
of fuzzy clustering and a fuzzified version of learning vector quantization. In
Section 3 we review pre-processing methods for documents and in particular
the vector space model, which we use to represent documents. In Section 4 we
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present our experimental results of clustering web page collections using different
global and cluster-specific term weighting approaches and finally, in Section 5,
we draw conclusions from our discussion.

2 Clustering

The best-known classical prototype based hard clustering methods are c-means
clustering [7,4] and learning vector quantization [17,18]. In the following, we
briefly describe their generalizations to fuzzy clustering and fuzzified learning
vector quantization as we use it in our experiments. For a more detailed discus-
sion and evaluation of these methods for document clustering see [5].

2.1 Fuzzy Clustering

While most classical clustering algorithms assign each datum to exactly one
cluster, thus forming a crisp partition of the given data, fuzzy clustering allows
for degrees of membership, to which a datum belongs to different clusters [1, 2, 14].
Most fuzzy clustering algorithms are objective function based: they determine
an optimal (fuzzy) partition of a given data set X = {x; | j = 1,...,n} into
¢ clusters by minimizing an objective function

J(X,U,C) = Z Xn: uld?,

i=1 j=1

subject to the constraints
n c
Viil<i<c: » u;>0, and Vil<j<n: Y uy=1,
j=1 i=1

where u;; € [0, 1] is the membership degree of datum «; to cluster ¢ and d;; is the
distance between datum x; and cluster ¢. The ¢ x n matrix U = (u;;) is called
the fuzzy partition matriz and C describes the set of clusters by stating location
parameters (i.e. the cluster center) and maybe size and shape parameters for each
cluster. The parameter w, w > 1, is called the fuzzifier or weighting exponent.
It determines the “fuzziness” of the classification: with higher values for w the
boundaries between the clusters become softer, with lower values they get harder.
Usually w = 2 is chosen. Hard clustering results in the limit for w — 1. However,
a hard assignment may also be determined from a fuzzy result by assigning each
data point to the cluster to which it has the highest degree of membership.
Since the objective function J cannot be minimized directly, an iterative
algorithm is used, which alternately optimizes the membership degrees and the
cluster parameters [1, 2, 14]. That is, first the membership degrees are optimized
for fixed cluster parameters, then the cluster parameters are optimized for fixed
membership degrees. The main advantage of this scheme is that in each of the
two steps the optimum can be computed directly. By iterating the two steps
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the joint optimum is approached (although, of course, it cannot be guaranteed
that the global optimum will be reached—the algorithm may get stuck in a
local minimum of the objective function J). The update formulae are derived by
simply setting the derivative of the objective function J w.r.t. the parameters
to optimize equal to zero (necessary condition for a minimum).

Depending on the distance measure used, several different fuzzy clustering
algorithms can be distinguished. Classical fuzzy c-means clustering employs the
Euclidean distance, while Gustafson-Kessel algorithm [13] uses the Mahalanobis
distance and the fuzzy maximum likelihood estimation (FMLE) algorithm [11] is
based on the assumption that the data was sampled from a mixture of ¢ multi-
variate normal distributions as in the statistical approach of mixture models [8,
3]. It is worth noting that of both the Gustafson-Kessel as well as the FMLE al-
gorithm there exist so-called axes-parallel versions, which restrict the covariance
matrices to diagonal matrices and thus allow only axes-parallel ellipsoids [15].
These variants have certain advantages w.r.t. robustness and execution time.

2.2 Learning Vector Quantization

Learning vector quantization [17, 18], in its classical form, is a competitive learn-
ing algorithm that has been developed in the area of artificial neural networks
and that can be applied to classified as well as unclassified data. Here we con-
fine ourselves to unclassified data, where the algorithm consists in iteratively
updating a set of ¢ so-called reference vectors p;, i = 1,...,c, each of which
is represented by a neuron. For each data point x;, j = 1,...,n, the closest
reference vector (the so-called “winner neuron”) is determined and then this
reference vector (and only this vector) is updated according to

new old old
" = )+771(wj—u§ )), (1)

where 77 is a learning rate. This learning rate usually decreases with time in
order to avoid oscillations and to enforce the convergence of the algorithm.

Membership degrees can be introduced into this basic algorithm in two dif-
ferent ways. In the first place, one may employ an activation function for the
neurons, for which a radial function like the

1
142

Cauchy function f(r) or the Gaussian function f(r) = e 2"
may be chosen, where r is the (radial) distance from the reference vector. In this
case all reference vectors are updated for each data point, with the update being
weighted with the value of the activation function. However, this scheme, which is
closely related to possibilistic fuzzy clustering [19], usually leads to unsatisfactory
results, since there is no dependence between the clusters, so that they tend to
end up at the center of gravity of all data points. This corresponds to the fact
that in possibilistic fuzzy clustering the objective function is truly minimized
only if all cluster centers are identical [27]. Useful results are obtained only if
the method gets stuck in a local minimum, which is an undesirable situation.
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An alternative is to rely on a normalization scheme as in probabilistic fuzzy
clustering, that is, to compute the weight for the update of a reference vector
as the relative inverse (squared) distance from this vector, or as the relative
activation of a neuron. This is the approach we employ here.

Furthermore we associate with each neuron not only a reference vector p;,
but also a covariance matrix 3;, which describes the shape and (if we do not
require it to be normalized to determinant 1) the size of the represented cluster.
A derivation of the update rule for this covariance matrix can be found in [5]. It
should be noted that versions of this algorithm that require the covariance matrix
to be normalized to determinant 1 or restrict the covariance matrix to a diagonal
matrix may be considered, too. Such constraints can improve the robustness or
the execution time of the algorithm. Finally it should be noted that the updates
may be executed in batch mode, aggregating the changes resulting from the data
points and actually updating the reference vectors and covariance matrices only
at the end of an epoch.

3 Clustering Document Collections

To be able to cluster text document collections with the methods discussed
above, we have to map the text files to numerical feature vectors. Therefore,
we first applied standard preprocessing methods, i.e., stopword filtering and
stemming (using the Porter Stemmer [22]), encoded each document using the
vector space model [23] and finally selected a subset of terms as features for the
clustering process as briefly described in the following.

3.1 The Vector Space Model

The vector space model represents text documents as vectors in an m-dimen-
sional space, i.e., each document j is described by a numerical feature vector ; =
(xj1,...,2jm). Each element of the vector represents a word of the document
collection, i.e., the size of the vector is defined by the number of words of the
complete document collection.

For a given document j the so-called weight x;; defines the importance of the
word k in this document with respect to the given document collection C. Large
weights are assigned to terms that are frequent in relevant documents but rare in
the whole document collection [24]. Thus a weight x ;i for a term k in document j
is computed as the term frequency tf;, times the inverse document frequency
idfy, which describes the term specificity within the document collection.

In [25] a weighting scheme was proposed that has meanwhile proven its usabil-
ity in practice. Besides term frequency and inverse document frequency (defined
as idfy = log(n/ng)), a length normalization factor is used to ensure that all
documents have equal chances of being retrieved independent of their lengths:

tf ;1 log %

\/Zﬁl (tfjlog =)

: (2)

Tik =
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where n is the size of the document collection C', nj the number of documents
in C' that contain term k, and m the number of terms that are considered.

Based on a weighting scheme a document j is described by an m-dimensional
vector &; = (xj1,...,%jm) of term weights and the similarity S of two documents
(or the similarity of a document and a query vector) can be computed based on
the inner product of the vectors (by which—if we assume normalized vectors—
the cosine between the two document vectors is computed), i.e.

S(@j, @) =Y wji - wh- (3)
=1

For a more detailed discussion of the vector space model and weighting schemes
see, for instance, [12,24, 23].

Note that for normalized vectors the scalar product is not much different in
behavior from the Euclidean distance, since for two vectors « and y it is

1
cosp — &:1__%(1’&).
| - y] 2 || |y|

Although the scalar product is faster to compute, it enforces spherical clusters.
Therefore we rely on the Mahalanobis distance in our approach.

3.2 Index Term Selection

To reduce the number of words in the vector description we applied a simple
method for keyword selection by extracting keywords based on their entropy. In
the approach discussed in [16], for each word k in the vocabulary the entropy as
defined by [20] was computed:

n

tf
Pjk 10go Dk with pjr = =, 4
- J 2 Pj J STt (4)

Wp=1+
loanj

where tfj;, is the frequency of word k in document j, and n is the number of
documents in the collection. Here the entropy gives a measure how well a word is
suited to separate documents by keyword search. For instance, words that occur
in many documents will have low entropy. The entropy can be seen as a measure
of the importance of a word in the given domain context. As index words a
number of words that have a high entropy relative to their overall frequency
have been chosen, i.e. of words occurring equally often those with the higher
entropy can be preferred. Empirically this procedure has been found to yield a
set of relevant words that are suited to serve as index terms [16].

However, in order to obtain a fixed number of index terms that appropriately
cover the documents, we applied a greedy strategy: from the first document in
the collection select the term with the highest relative entropy as an index term.
Then mark this document and all other documents containing this term. From
the first of the remaining unmarked documents select again the term with the
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Label | Dataset Category | Associated Theme
A | Commercial Banks | Banking & Finance
B Building Societies | Banking & Finance
C | Insurance Agencies | Banking & Finance
D Java Programming Lang.
E C/C++ Programming Lang.
F Visual Basic Programming Lang.
G Astronomy Science
H Biology Science
I Soccer Sport
J Motor Racing Sport
K Sport Sport

Table 1. Categories and Themes of the used benchmark data set of web pages.

highest relative entropy as an index term. Then mark again this document and
all other documents containing this term. Repeat this process until all docu-
ments are marked, then unmark them all and start again. The process can be
terminated when the desired number of index terms have been selected.

4 Experiments

For our experimental studies we chose the collection of web page documents used
in [26].! The data set consists of 11,000 web pages classified into 11 equally-
sized categories each containing 1,000 web documents. To each category one of
four distinct themes, namely Banking and Finance, Programming Languages,
Science, and Sport was assigned as shown in Table 1.

In the following we present results we obtained using the preprocessing strate-
gies described above. After stemming and stop word filtering we obtained 163,860
words. This set was further reduced by removing terms that are shorter than
4 characters and that occur less then 15 times or more than 11,000/12 ~ 917
times in the whole collection. In this way we made sure that no words that per-
fectly separate one class from another are used in the describing vectors. From
the remaining 10626 words we selected 400 words by applying the greedy index-
term selection approach described in Section 3.2. For our clustering experiments
we selected finally subsets of the 50, 100, 150, ..., 350, 400 most frequent words
in the subset to be clustered. Based on these words we determined vector space
descriptions for each document (see Section 3.1, Equation (2)) that we used in
our clustering experiments. All vectors were normalized to unit length (after the
subset selection).

To assess the clustering performance using term re-weighting techniques, we
computed the performance on the same data sets used in our previous experi-

! This collection is available for download at
http://www.pedal.rdg.ac.uk/banksearchdataset
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ments [5], i.e., we clustered the union of the dissimilar data sets A and I, and the
semantically more similar data sets B and C. In a third experiment we used all
classes and tried to find clusters describing the four main themes, i.e., banking,
programming languages, science, and sport.

For our experiments we used c-means, fuzzy clustering and learning vector
quantization methods. The learning vector quantization algorithm updated the
cluster parameters once for every 100 documents. 2

A detailed discussion of the performance of these methods with and with-
out cluster centers normalized to unit length, with and without variances (i.e.,
spherical clusters and axes-parallel ellipsoids—diagonal covariance matrices—of
equal size), and with the inverse squared distance or the Gaussian function for
the activation / membership degrees can be found in [5]. Here, however, we focus
on term re-weighting aspects.

4.1 Clustering using Variances

Our prior experiments in document clustering [5] indicated that the use of
variances—which can be seen as a method for cluster specific keyword weighting
—can sometimes improve the clustering performance and stability. However, in
our first studies we restricted ourselves to analyze the performance using mean
performances and variances. As a consequence, the causes for the differences in
the performance remained somewhat unclear. Therefore we repeated several of
the experiments and present in Figures 2 to 3 the results obtained with cluster
centers normalized to length 1 with and without variances for hard c-means,
fuzzy c-means and (fuzzified) learning vector quantization. All results represent
the values of ten runs, which differed in the initial cluster positions and the
order in which documents were processed. For the experiments with variances
we restricted the maximum ratio of the variances to 1.2%2 : 1 = 1.44 : 1, which
seemed to yield the best results over all three clustering experiments.

The dotted lines show the default accuracy (obtained if all documents are
assigned to the majority class). The grey horizontal lines in each block, which are
also marked by diamonds to make them more easily visible, show the average
classification accuracy (computed from a confusion matrix by permuting the
columns so that the minimum number of errors results) in percent (left axis),
while the black crosses indicate the performance single experiments. The grey
dots and lines close to the bottom show the average execution times in seconds
(right axis), while the smaller grey dots and lines at the top of each diagram
show the performance of a Naive Bayes Classifier trained with the corresponding
subset of words. The Naive Bayes Classifier can be considered as an upper limit,
while the default accuracy is a lower baseline.

For all data sets the clustering process for fuzzy c-means and (fuzzified)
learning vector quantization is much more stable than c-means. However, all

2 All experiments were carried out with a program written in C and compiled with
gee 3.3.3 on a Pentium 4C 2.6GHz system with 1GB of main memory running
S.u.S.E. Linux 9.1. The program and its sources can be downloaded free of charge
at http://fuzzy.cs.uni-magdeburg.de/ borgelt /cluster.html.
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methods seem to switch between two strong local minima for the semantically
similar data sets B and C.

The introduction of variances increases the performance of fuzzy c-means
in all cases. However, the performance for c-means is only improved for the
two class problem with data sets A and I and the four class problem, while
the performance of (fuzzified) learning vector quantization is improved for the
semantically more similar data sets B and C and the four class problem.

4.2 Keyword Weighting by Information Gain

Information gain (also known as mutual (Shannon) information or (Shannon)
cross entropy), which is frequently used in decision tree learning, measures the
average or expected entropy reduction resulting from finding out the value of a
specific attribute. In text categorization information gain can be used to measure
how well a term can be used to categorize a document, i.e., it measures the
entropy reduction based on this specific term.

The information gain of a term t; for a given set of r classes ¢; is defined as:

Tgain(tr) = — > P(ei)logy P(e;) (5)
i=1

+P(tk) Z P(Ci|tk) 10g2 P(Ci|tk)

=1
+P(T) > Pleilti) log, P(cilt)
=1

The information gain values are then either used to re-weight the terms of each
document or to initialize the cluster-specific variances (see below).

4.3 Re-Scaling the Document Space

In order to study the effects of keyword weighting, we computed the “impor-
tance” of each keyword for the classification of a document based on the infor-
mation gain (see above). These “importance” values are then used to re-weight
the terms in each document by computing

i, = Tjk + (Igain (tk) + 0) (6)

and then re-normalizing the document vectors to unit length, resulting in a re-
scaling of the document space with respect to the importance of a keyword.
The offset o in the above formula was computed as

o max¢, eT Igain (tk) -7 mintk eT Igain (tk)
N r—1 ’

where r is a user-specified maximum ratio of the scaling factors for different
terms and T is the current set of index terms. From several experiments we
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conducted it seems that values of  must be small (close to 1) in order not to
spoil the performance completely. Here we chose r = 1.5.

The results of these experiments are shown in the top rows of Figures 4 to 6.
As can be seen, no gains result in any of the cases. The accuracy rather deterio-
rates slightly, an effect that gets stronger with higher values of r as we observed
in other experiments. Hence we can conclude that re-scaling the document space
in the way described does not lead to an improved performance.

4.4 Cluster Specific Keyword Weights

Instead of using the information gain to re-scale the document space one may
also add shape parameters (i.e., (co)variances) to the cluster prototypes, which
are initialized according to the “importance” of a term. This has the advantage
that term weights can be cluster specific, since each cluster may use a different
set of variances.

To evaluate this approach, we proceeded as follows: in a first step we clustered
the documents with randomly chosen starting points and without variances.
Afterwards, the best matching classes are automatically assigned by evaluating
the confusion matrix of the classification result obtained with the learned clusters
and the correct document classes.

Then the cluster prototypes were enhanced with cluster-specific variances
computed as the product of the term frequency in the class and the information
gain of the term w.r.t. a separation of the class assigned to the cluster from all
other classes. In order to keep the cluster shapes close to spherical, we restricted
the maximum ratio of the variances to 1.2% : 1 = 1.44 : 1 (cf. Section 4.1. Other
values for this maximum ratio (higher as well as lower) led to worse results.
Especially larger values considerably worsened the performance.

Finally, in a second clustering run, these enhanced cluster prototypes were op-
timized without changing the variances (only the cluster centers were adapted).

The results of these experiments are shown in the bottom rows of Figures 4
to 6. As can be seen, the cluster-specific variances stabilize the results for the
four cluster problem and—though only very slightly—improve the performance
for the two cluster problems. Thus we can conclude that cluster-specific variance
may provide some means for term weighting. However, the approach seems to be
very sensitive to the parameter settings. Furthermore, the computational costs
are very high.

4.5 Choosing Initial Cluster Centers

As we mentioned in Section 4.1 all clustering methods seem to switch between
local minima depending on the initial cluster centers choosen—which is in fact a
well known clustering problem, especially for the less robust c-means algorithm,
which is prone to get stuck in local optima easily. Therefore we studied a quite
simple initialization approach: for each class we sorted the index terms w.r.t. the
product of the term frequency in the class and the information gain of the term

63



64

100

80

60

40

20

80

60

40

20

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

c-means fuzzy c-means vector quantization
100 100 -
R e P P T ree pe e e ] Fowe -
2 80 2 80
60 60
1 40 1 40
— 20 — 20
ot o | o | s P e e I
T00 200 300 400 ° 0700 200 300 400 ° 0==T00 200 300 400
100 100 -
(R H T (T B £ g o0 vt o ot Lo s st s vt
2 80 2 80
60 60
1 40 1 40
[
papEr= b 20— T 20 pEpE=
. N — -
100 200 300 400 0—"760 200 300 400" 0="700 200 300 400

Y]

Fig. 1. Classification accuracy over number of keywords on commercial banks versus
soccer (top row: standard, bottom row: with adaptable variances).
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row: standard, bottom row: with adaptable variances).
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Fig. 4. Classification accuracy on commercial banks versus soccer (top row: document
space re-scaled, bottom row: fixed cluster specific variances).
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row: document space re-scaled, bottom row: fixed cluster specific variances).
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w.r.t. a separation of the class from all other classes (cf. Section 4.4). Then we
selected the first £ words in these lists and initialized the cluster center using the
same value for each selected word and zero for all others, finally normalizing the
vector to unit length. Even for fairly small values of k (i.e. few selected words),
this initialization results in a very stable clustering performance. Thus—similar
to the idea of weight initialization in order to bias the clustering process—known
describing keywords can be used in order to initialize the clustering process.
In this way unwanted local minima may be avoided and the results may be
stabilized.

5 Conclusions

Our experiments show that including prior information about the “importance”
or “goodness” of a keyword for a desired class or cluster can, in principle, improve
the clustering performance. However, it is fairly difficult to find a good way of
scaling the documents or enhancing the cluster prototypes in an appropriate way.
Scaling the document space does not yield any improvement at all. On the other
hand, cluster-specific variances derived from the “importance” of index terms can
slightly improve and stabilize the clustering performance. However, the gains are
marginal and the approaches seem to be fairly sensitive to parameter settings.
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Abstract The automatic processing of search results that stem from Web-based
search interfaces has come into focus, and it will remain important (as long as
XML is not a universally applied technology). The reasons for this are twofold:
(1) The need for value-added services such as filtering or graphical preparation of
search results will increase. (2) The manual creation of tailored parsers for the in-
formation extraction from HTML pages cannot keep pace with the fast changing
presentation of the search results in right these pages.

Automatic wrapper generation addresses this problem. It means the construction
of a tailored parser for a certain type of HTML page with a minimum of man-
ual intervention. This paper introduces the state of the art and presents an own
development: A two-stage approach that combines highly efficient suffix match-
ing based on a modified Patricia tree along with a knowledge-based analysis of
candidate token sequences.

Key words: Information Extraction, Automatic Wrapper Generation,
Wrapper Induction, Web Mining, Information Retrieval

1 Introduction

Web-based search interfaces are widely used as front-ends for information sources such
as Web search engines, digital libraries, online shops, and other types of databases.
Starting with a keyword search, they generate HTML result pages that contain a list
of the found records. Such a semi-structured representation may be adequate for a hu-
man reader of this page; however, it is difficult to be further processed by applications
that provide value-added services such as filtering, grouping, re-arranging, or graphical
preparation: The generated record lists are not directly machine-readable and need to
be “disrobed” of their wrapping code. Figure 1 shows an example.

Automatic wrapper generation deals with this problem; it aims at the automatic
construction of a parser that extracts the interesting information by finding records and
eliminating superfluous HTML code. The following list mentions several challenges
for automatic wrapper generation, and it also shows its importance for value-adding
services.

! The term “automatic wrapper generation” may be misleading; perhaps a better description is
“automatic parser generation for wrapping code”.
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Figurel. The snapshot shows a clipping of the T-Online search interface. For a subsequent pro-
cessing of the search results a special block (bottom middle) has to be found as well as correctly
parsed.

(1) A result list of records is embedded in header and footer information, which typi-
cally contains HTML code for navigation, logos, copyright notices, advertisements,
etc.

(2) Each search interface brings along its own concept of wrapping its records, which
includes particular font styles, enumeration styles, etc.

(3) The data structure within a record may vary with respect to presentation and data
element constraints.

(4) Recurring navigational information like “search more of this” may be contained
within a record.

(5) Structure and presentation of a generated list may change every now and then, when
the provider modifies the design of the presentation.

The paper in hand is devoted to this problem; more specifically, it focuses on the ex-
traction of records from Web search engines. This work is also related to our Alsearch
project where search results from different information sources are grouped themati-
cally within a categorization step [15, 18]. In this context, especially Point 5 is of a high
importance, since we experience the generated HTML pages to change frequently. 2

We present a two-stage approach that combines highly efficient suffix matching
based on a modified Patricia tree with a knowledge-based analysis of candidate token

2 This in turn means that human intervention becomes necessary to adapt in Alsearch the re-
spective parser code for this information source.
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sequences. The remainder of this paper is organized as follows. The next subsection
gives an overview of existing approaches to automatic wrapper generation. Section 2
introduces our approach, and Section 3 presents some analysis results.

1.1 Classification of Existing Approaches

To hand-craft a tailored information extraction algorithm may be acceptable for a small
number of search interfaces; however, in the long run it constitutes a considerable over-
head: For each information source, a programmer must identify characteristic HTML
patterns that wrap interesting data records, the so-called “extraction patterns”, and use
them to write a parser. This procedure is tedious and error-prone, and a small change in
the design of a result page often renders hand-crafted parsers defective.

For this reason automatic information extraction algorithms have been developed in
the last years. They can be divided into wrapper generation algorithms, wrapper ver-
ification algorithms, and wrapper re-induction algorithms [9]. Among these, wrapper
generation algorithms are the best investigated ones. Their goal is to generate dedi-
cated programs or program parameters like grammars or patterns, which can be used to
identify record boundaries within result pages of a particular source.

Supervised wrapper generation algorithms? learn extraction patterns from a set of
training documents wherein records or attribute boundaries have been labeled manually.
The majority of these methods represent the patterns as a finite state machine, e. g. as
a grammar, a regular expression, or in the form of a hidden Markov model [11, 1, 7,
3, 17, 5]. The underlying pattern identification algorithms include inductive and active
learning strategies [10, 4].

Unsupervised techniques overcome the need to manually label training documents.
The approach of Gao et al. uses a set of result pages from the same source and identifies
a region that has a “tabular” structure [6]. Based on this table, candidate extraction
patterns that will match the rows are inferred. Another system, called IEPAD, discovers
repetitive patterns within a result page by means of a Patricia tree and proposes some
of them as record candidates [2]. Liu et al. present an approach to extract data from
HTML tables, which is based on the analysis of the parse tree of a Web site.

The task of wrapper verification algorithms is to check whether a generated wrapper
still behaves as intended, or if design changes within its associated information source
lead to a malfunctioning. Kushmerick et al. propose an algorithm that learns a proba-
bilistic model of the extracted data during the training period, which captures data type
characteristics like the fraction of numeric attributes within a record [8]. A significant
change of the expected data type characteristics in a result page is interpreted as a de-
sign change, and intervention may become necessary. Given the case that a verification
algorithm determines a malfunctioning of a wrapper, so-called wrapper re-induction
algorithms come into play. Lerman and Minton propose a semi-automatic algorithm
that also learns a probabilistic model of the data during a training period [12]. If the
learned model does not fit the extracted data of a result page any longer, their algorithm
maps expected attributes onto data fields within the records of the modified result page
probabilistically.

% This class of algorithms is also known as semi-automatic wrapper generation algorithms.
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Token

pattern Len. Freq. Distr.

THTLATA 7 5 (3,1)
ASTHTLATA 9 (7,2)
AATTTTHTLATA 12 2 (3,1)
TLATA 5 5 (2,1)
THTTLATSA 9 3 (3,1)
TTTHTL 6 3 (5,2)
SSTHTLATA 9 2 (9,4

THTL 4 (5,3

HTML result page Patricia tree Pattern table 7 Knowledge-based Interesting
analysis post-processing pattern

Figure2. Two-stage approach to automatic wrapper generation: The identification of candidate
patterns with a Patricia tree is coupled with a knowledge-based post-processing to find among the
candidate patterns the most likely one(s).

In the literature on the subject the term “automatic” refers to the degree of automa-
tion in a wrapper generation algorithm for a given source at a given time. As pointed
out above, the challenge in a meta-search situation is to construct a parser that is robust
against changes of result pages in time. This is what we call adaptive.

2 Adaptive Wrapper Generation for Search Engines

Result pages of search engines contain several regular structures; one of these structures
is the list with the snippets that characterize the matching documents for the query and
which we would like to identify. A regular structure contains sequences that are tagged
in a uniform way. For example at Lycos,* a snippet is wrapped in the following code:

<1i><a>TEXT</a><font color="#808080"></font><br
/>TEXT<span>TEXT</span><a>TEXT</a></1i>

If one considers the » suffix strings that can be formed from a given HTML page
of length n, several among these suffixes start with the same prefix.®> When inserting
the suffixes in a Trie,® multiple occurrences of the prefixes can be efficiently detected.
Since inan HTML result page several hundreds of such recurring patterns can be found,
additional knowledge must be employed to detect those few patterns that actually wrap
the interesting snippets. This observation suggests a two-stage approach for pattern
identification (cf. Figure 2):

(1) Creation of a table 7 with candidate patterns.
(2) Knowledge-based post-processing of 7 to identify the interesting pattern(s).

However, a necessary prerequisite is the tokenization of an HTML page, which
provides us with a string .S of tokens. There is the question of how fine-grained the text

*http://www.lycos.de

% A suffix of a string S is a substring of S that starts at some position + < |S| and ends at
position |.S|.

® The term “Trie” is derived from the terms “tree”, “information”, and “retrieval” and designates
an index structure for efficient text search [19].
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Lot \ g ._——"c’:ool
dirty. ; dog L n = Discriminating byte
Ve N m = Discriminating bit

Figure3. A Patricia tree that contains the words “cool”, “cat”, “dirty”, and “dog”. For perfor-
mance reasons the discriminating position is encoded as a pair of byte and bit position.

elements in the HTML page shall be distinguished. Chang and Lui distinguish merely
two tokens, namely “HTML tag” and “plain text” [2]; to leave more flexibility for the
knowledge-based post-processing step we currently support about 130 different tokens.

2.1 TableCreation

Let S be a string (of tokens) of length n. As mentioned above, a Trie provides an effi-
cient means to set up a table of candidate patterns. The theoretically optimum algorithm
for constructing an index of all suffixes for .S is the suffix tree [14]; its runtime is linear
in the length of S. A naive algorithm would generate the n suffix strings of .S and insert
them in a standard Trie, which results in a runtime of O(n?).

Our approach is oriented at the naive algorithm: However, the n suffixes of S are
not generated explicitly but “read off” by moving an index from 1 to n over S. Every
suffix is identified by its starting position, and a Patricia tree (explained below) is used
to identify all suffixes that start with the same token sequence. Though the theoretical
runtime still is O(n?) this approach will behave even more efficient than a suffix tree
implementation, except for a few pathological cases.’

A Patricia tree® is a particular digital search tree that has two salient properties:
(1) Each inner node in the tree is used for differentiation purposes, say, each inner node
has two successors. (2) The keys (strings) are not stored into leafs but into inner nodes,
which saves half of the nodes. A Patricia tree has the characteristic of digital search
trees in that its structure is independent of the insertion sequence. A digital search tree
considers keys as bit sequences; an inner node defines the position of the key that shall
be investigated for discrimination purposes. Figure 3 gives an example.

From a Patricia tree all repeating sequences in the token string S can be collected
in O(n) runtime and put into a table 7.

" Rationale for this behavior is that the length of the longest common subsequence in a tokenized
HTML page can be assessed by a constant.

8 The term “Patricia” is an acronym for “practical algorithm to retrieve information coded in
alphanumeric”. The data structure was proposed by Morrison [16].

73



74

Machine Learning and Interaction for Text-based Information Retrieval (TIR-04)

2.2 Table Post-Processing

Typically the table 7 of candidate patterns contains more than hundred entries. For re-
liable identification of the interesting element, all patterns (token sequences) are char-
acterized by several features. The most important ones are: pattern length, pattern fre-
quency, pattern distribution, average pattern distance.

This information is used within heuristic rules that assign positive and negative
evidence values to the patterns—example:

IF length(p)*frequency(p)/n > 0.2 THEN raise_evidence(p, 2)

Here p € 7 designates a pattern; the rule assesses the portion by which p covers the
entire token string S. In our current implementation, which focuses on HTML result
pages of search engines, the evidence values can be estimated; nevertheless, it is planned
to acquire them by a machine learning approach soon.

3 Quantitative Analysis

Adaptive wrappers are generated on the fly, in extreme cases each time a search result
is delivered from a search engine. I.e., performance analyses are not only interesting
with respect to extraction quality, but also with respect to wrapper generation time. We
did some analyses in this connection, based on a test corpus with about 100 generated
result pages for several popular search engines. Our wrapper implementation is done
in Java, and the experiments were conducted on a Pentium IV 1.2 GHz system running
RedHat Linux.

Amount of Tokenization Patricia tree Pattern Pattern Total
sample pages generation extraction analysis
28KB 121 ms 23 ms 32ms 19ms 195ms

Table 1. Average runtime of different steps in the course of adaptive wrapper generation.

Table 1 shows the averaged runtime for wrapper generation for one result page. The
tokenization of the result pages took over 60% of the total runtime, since we used a
generic HTML parser that was not optimized for our tokenization step. The heuristic
ranking of relevant patterns within the created table 7" was always very good, and thus
explains the low pattern analysis time. Due to the fact that a wrapper verification algo-
rithm also has to parse and analyze a result page, we do not expect substantial runtime
differences between both approaches. Note that it is conceivable to generate an adaptive
wrapper on the client machine of a user, in a stand-alone meta search application.

AltaVista Lycos Netscape
~ 80% ~ 90% ~ 90%

Table 2. Portion of correctly identified result lists. Basis were about 100 different result pages for
each of the mentioned search engines.
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oo Len. Freq. Distr.

THTLATA 7 (3,1

ASTHTLATA 9 (7,2

TLATA 5 (2,1) a

THTTLATSA 9 (3,1 z/

TTTHTL 6 (5,2)

SSTHTLATA 4

THTL 4 3
Identification Base-type-specific Interesting
of base type post-processing pattern

Figured. If the process of automatic wrapper generation is organized as a three-stage approach,
the knowledge-based post-processing step gains twice: It becomes more effective and easier to
be implemented.

Table 2 contains some classification results. The post-processing was able to iden-
tify most of the records. However, we employed the knowledge that a record at least
contains a URL and a headline.

4 Current Work

The two-stage approach to wrapper generation presented in this paper provides a high
degree of flexibility. Nevertheless, the knowledge-based post-processing step becomes
more and more intricate with the number of different information sources that shall be
handled.

It would be useful in this connection, if a certain “result page base type” is recog-
nized in advance, such as “Shop” or “Link List”, and a dedicated set of rules is chosen
and applied in the knowledge-based post-processing step (see Figure 4). In our current
work we investigate how the necessary recognition step can be realized by learning a
fingerprint from the pattern table.

Moreover, we are developing measures of robustness and flexibility for a generated
wrapper in order to prognose both (1) its reliability when parsing HTML pages from in-
formation sources the parser was not designed for, and (2) the expected malfunctioning
rate depending of extent of modifications of the HTML page.
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Abstract. The goal of every information retrieval (IR) system is to de-
liver relevant documents to an user’s information need (IN). Therefore an
accurate IN assessment is essential to the quality of the system’s search
results. However, many IR systems ask the users to assess their infor-
mation needs and communicate them to the system, usually in form of
queries. The systems assume the queries to be a perfect assessment of
the information needs and deliver relevant information, ending the inter-
action. However, experiences showed that in many cases the information
need cannot be specified in a single query.

This paper addresses the problems of simple IN assessment and pro-
poses a multi-interface IR system to overcome the problems. Such a sys-
tem supports the user with several search interfaces for different search
contexts. Exemplarily the document retrieval engine AiSearch from the
Knowledge-based Systems Group at Paderborn University is reviewed
to demonstrate some interfaces. This includes a cluster-based interface,
a concept taxonomy interface, and a chronological document relations
interface.

1 Introduction

Information need (IN) is one of the most important concepts in information
retrieval (IR) theory. It is the main input parameter for most IR operations as
well as the main evaluation criteria for the quality of the delivered information.
But even though the concept of information need is central to the success of any
IR system, most IR models treat the concept as intuitively clear and informal.
From this viewpoint the importance of information need assessment is often
underestimated. Indeed in most IR systems information need assessment is user
business. Take for example common internet search engines. They require the
users to formulate their information needs in form of a query, assuming that the
query is an accurate definition of the information need. However, it was shown
that this assumption does not hold for many IR transactions [1] [2].

Starting from the viewpoint that common search engine interfaces do not
support an accurate information need assessment this paper proposes an IR
sytem with multiple user interfaces, where each of the interfaces fits a certain
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search context of the user. Based on a theoretical and historical discussion of
IN assessment in section 2-4 the multi-interface model is presented in section 4.
Section 5 describes AiSearch, a search engine project of the Knowledge-based
Systems Group at Paderborn University, to demonstrate how parts of the model
were implemented and how they look like. [3].

2 Historical Developments in Information Need
Assessment

Before a formal definition of information need and informantion need assessment
is given some approaches to information need assessment are briefly reviewed in
their historical context. The intention is to build a foundation for the definitions
given in the next section.

2.1 Query approach

The query approach was the first IN assessment method and is still widely used.
It was developed in the late 1950s and early 1960s in the context of text proper-
ties research and the formulation of the standard IR model [4] [5]. The basic idea
of the approach is to let the user assess his information need. Therefore the user
enters a query, which usually consists of one or more natural language terms. In
turn the system presents all documents from its database that match the query.
In 1965 Roccio added an additional step to the query approach: the relevance
feedback [6]. With relevance feedback the user judges the result in light of its
relevance to his or her information need. Therefore he classifies the returned
documents into two classes, the relevant documents and the non-relevant docu-
ments. After that the system uses the classification to adjust the initial query
and the retrieval process starts again with the adjusted query. The new result
is, if necessary, classified again by the user. The assessment is repeated until the
query is a perfect representation of the user’s information need.

2.2 Dialog approach

The query approach bases on the assumption that the user knows what his in-
formation need is and that he can adequately communicate it to the system.
Relevance feedback takes care of an accurate IN assessment. However, relevance
feedback implicitly assumes that the information need itself stays constant over
time, even when the user has gained new knowledge during the search process.
Recognizing that this assumptions did not hold always, Oddy proposed a dialog
interface in 1977 [1]. The basic idea is that a user’s understanding of his infor-
mation need underlies a continuing evolution while new information is retrieved.
The dialog interface allows the user to reformulate his previous query to broaden
or narrow the retrieved information or to shift the search goal. The interaction
is continued until the needed information is found. The difference to the query
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approach is that Oddy embedds the user into the IR system. The user is no
longer only an input giver but a part of the retrieval process.

Some years later Belkin shifted the focus even farther to the user and his
information need [2]. He asked why most users are not able to specify their
information needs in an appropriate way. The answer was given by a new element
in the user model: the ”anomalous state of knowledge” (ASK) of the user [2].
Therefore every user who faces a problem or situation has a feeling about a gap
in his knowledge, the anomaly. In how far the anomaly is understood by the
user depends on his cognition of the particular situation. Belkin introduced two
levels of specificability: the cognitive level and the linguistic level. The cognitive
level refers to what degree the user is able to specify (understand) his current
situation. The linguistic level refers to the degree the user is able to specify his
information need in linguistic terms. Belkin states that if a user is not able to
understand his current situation at the cognitive level well enough, then he will
hardly be able to express his information need at the linguistic level. He suggests
a system design that is built around the user and his ASKs. He refers to Oddy’s
dialog approach as a good example for such a system design [7] [8].

2.3 Berrypicking approach

In 1989 Bates discovered that the relevant documents are not only the documents
which are retrieved at the end of the search, but also some of the documents
encountered during the search [9]. He proposed a new approach, which accounts
for the changing information need during the search. In every step of the search
the user may reformulate his information request based on the knowledge gath-
ered in previous steps. The user is also allowed to keep some of the retrieved
documents as relevant. His approach is an evolving search like Oddy’s, but dif-
fers in that the relevant documents are collected step by step like berries are
picked in the forest. Therefore the approach is named berrypicking. In addition
he observed that users tend to change their search strategy depending on their
rational information need.

2.4 Clustering approach

The above approaches assume some kind of interaction between system and user.
In contrast clustering infers from the structure of the document collection on the
information needs that could be satisfied with the document collection. Docu-
ment clustering was subject to research since the 1960s [10] [11] [12]. In 1979
van Rijsbergen formally connected clustering and information need by formulat-
ing the cluster hypothesis, which states that closely associated documents are
relevant to the same information request [11]. Therefore clustering algorithms
highlight patterns in a document collection and allow the users to browse for
the needed information. The explosion of digital stored information during the
1990s made this approach very attractive. However, many design questions are
still open, most namely the evaluation of document cluster quality [13] [14].
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3 Essentials of Information Need Assessment

Based on the historic review in the previous section the following definitions
intend to clarify the concept of information need.

Definition 1 (Information Need). Information need refers to the amount of
all absence information, which is necessary for a user to reach his or her goals
n a particular situation. The following assumptions hold:

1. The user may not know what exactly his information need is.
2. The user may not be able to formulate his information need.
3. The information need of a particular user may shift during a search session.

Definition 2 (Rational Information Need and Radical Information Need).
Let 1(U, S) be the information need of user U in situation S. The part of the
information need the user is aware of is referred to as rational information need
IRrt. The part of the information need the user is not aware of is referred to as
radical information need Iry. Rational and Radical information need are dis-
junct:

1. Ir (U, S)U Irq(U,S) = I(U,S).
2. Ir(U,S) N Igq(U,S) = 0.

Definition 3 (Information Need Assessment). Information need assess-
ment refers to the process of increasing the degree of rational information need
of a user during a search session.

4 IR Assessment Model

The IN Assessment approaches are not competing with each other for which one
is the best. Instead each approach fits a certain search context better than the
others. IR system interfaces should account for this and dynamically adapt to
the user’s search context. The model in Figure 1 shows the IR Multi-Interface
Model, which incorporates different IN assessment approaches.

The model consists of three layers built around the user. The inner layer
represents the interfaces. Every interface gives the user another view on the
data. The middle layer represents the engines, which are necessary to realize the
interfaces. The outer layer represents the coordination system. The coordination
system decides what interface is presented to the user in a particular situation.

For the coordination system to work the classification framework in figure 2 is
applied. The framework classifies IN assessment methods along two dimensions:
the assessment time and the assessment style.

The assessment time refers to the timeframe in which information is gath-
ered about the user. In the case that the system encounters an unknown user,
who demands just in time information, the assessment time is short-term. This
situation is common for mass-user internet search engines. In the case that the
system continuously collects data about the information need of its users, the
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Fig. 1. Multi-Interface Model: The IR system is build around the user. It offers different
interfaces for searching in the system’s database.

assessment time is long-term. The advantage of long-term IN assessment is that
the system can distribute new relevant information to its users when it enters
the system. However, for this setting the users should have, at least to some
degree, a constant information need over the time.

The assessment style refers to the degree of human/computer involvement in
the IN assessment process. If the user formulates his information need by himself,
then the assessment style is supervised. This style is very useful when the user
knows what source he is looking for. If the system assesses the information need
of the user, then the assessment style is unsupervised. This situation is very
common when a user acquaint himself with some new topic and does not know
the important keywords. But also in the case that an overwhelming amount of
relevant information exists unsupervised methods are useful to discover some
structure in the information. If both, the user and the system, are involved in
the IN assessment, then the assessment style is semi-supervised.

The assessment style is closely tied to the degree of rational IN/radical IN.
The higher the degree of rational information need in relation to radical infor-
mation need the more likely a supervised method will support the user and vice
versa. Therefore a search usually starts with an unsupervised or semi-supervised
IN assessment method and moves during the search session torwards a supervised
method.

5 AiSearch

AiSearch is a Web document retrieval engine developed by the Knowledge-based
Systems Group at Paderborn University [3]. The engine is used for research in
information retrieval. For the purpose of information need assessment the engine
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Fig. 2. IN Assessment classification: The IN assessment approaches are classified along
the two dimensions assessment style and assessment time. The transparent numbers
indicate the degree of IR system involvement in the IN assessment. They range from
one (low IR system involvement) to six (high IR system involvement).

incorporates different user interfaces. Up to now two clustering based interfaces
are implemented and a third, which highlights chronological relations between
documents, is subject to research.

5.1 Implemented Interfaces

Figure 3 shows a clustering based IR interface. In this view the retrieved doc-
uments are clustered into conceptionally similar groups. The groups are repre-
sented by rectangulars and their content is described by terms on the correspond-
ing rectangular. The content of the selected cluster, which is always centered, is
shown in the window on the right side of the screen. The conceptional distance
between two clusters are indicated by the distribution of the rectangulars on the
screen. Therefore the closer a cluster is located to the center the more closely
it is related to the selected cluster. In addition a numbered line between two
clusters indicate their closeness in quantitative terms.

In contrast the screenshot in Figure 4 shows a taxanomic view of document
clusters. In this view only a small number of all clusters are displayed. The
clusters are represented by a term, which describes the content. When a user
clicks on one of the terms the corresponding cluster is extended and the view
displays its subtopics. The view is very useful when the information need is
highly unspecific and the IR system returns a large number of different clusters.
In this case a presentation of all clusters at the same time would confuse the
user.

5.2 Future work

An interface that highlights chronological relations between documents is subject
to current reseach. The basic idea is that knowledge about the development of a
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Fig. 3. Cluster-based view: The documents are clustered in conceptionally similar
groups. The rectangulars represent the clusters, the terms on every rectangular de-
scribe the content, and the line between two connected rectangulars indicate their
closeness. On the right side of the sceen the content of the selected cluster is displayed
in ranked order.

certain topic over time is useful in some situations. Figure 5 shows schematically
two views on chronological structured documents. The view on the left side shows
a visualization for clusterd results. The vertical axis represents the clusters and
the horizontal axis the timeline. Circles in the coordination system represent
documents. The bigger a circle the more documents of the corresponding topic
refer to events at that time. The view on the rights side shows the ”chronological
environment” of the current document.

The realization of the engine for the chronological analysis demanded the
construction of a knowledge base. At the core of the knowledge base is a set of
manual tagged text documents. The tag structure is used to extract time/event
entities. A time/event entity is for example the sentence ”He plans to change
to another club in 2005.”. It is called time/event entity because the sentence
describes an event that takes place at a certain time. Every single time/event
entity is used as an example in the knowledge base database. Figure 6 shows
a screenshot of the engines rule manager and a set of examples. The structure
of every example is finegrained with additional tags like {Year; and j/Year; or
iNumber; and j/Number;. Based on the examples and a set of principles the
system automatically indentifies time/event entities in texts.

At the moment the engine is still a prototype and its result quality subject to
current research. A more detailed description of the system and its performance
in practical settings will occur in follow-up publications during this and next
year. In addition the content of the texts is restricted to sports topics. However
an extension to political and business topics is planned.
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Fig. 4. Taxonomic view: A small number of all cluster is displayed at the beginning.
Every cluster is represented by a term, which describes its content. The user can extend
the clusters to display subtopics.

6 Summary and Outlook

The purpose of this paper was to shift the eye of the reader to the importance of
information need assessment. Therefore the text started by criticising the short-
comings of current IN assessment practices, namely the query input/list output
IR systems. A historical survey showed that a user is embedded in different
search contexts, which determine how much the user knows about his current
information need. The IR Multi-Interface Model was presented to address the
existence of several search contexts and it was stated that an IR system should
offer different user interfaces and views on the data. Finally the search engine
AiSearch was surveyed to demonstrate the functioning of different interfaces in
practice.

For the furture the Knowledge-based Systems Group at Paderborn University
plans to introduce more interfaces for AISearch. In the short run the view on
chronological structured documents will be added to the system and performance
statistics will be published in follow-up papers.
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