
Further Enhancement to the Porter’s Stemming Algorithm

Fadi Yamout1, Rana Demachkieh1, Ghalia Hamdan1, Reem Sabra1

1 Faculty of Computer Sciences
C&E American University I., Beirut, Lebanon

Email: fyamout@inco.com.lb

Abstract. Stemming algorithms are used to transform the words in texts into their
grammatical root form, and are mainly used to improve the Information Retrieval
System’s efficiency. Several algorithms exist with different techniques. The most
widely used is the Porter Stemming algorithm. However, it still has several
drawbacks, although many attempts were made to improve its structure. This paper
reveals the inaccuracies encountered during the stemming process and proposes the
corresponding solutions.

1. Introduction

Finding information is not the only activity that exists in an Information Retrieval
(IR) system. Indexing, for instance, refers to how information and user’s requests
from the system are represented. We will refer to the information to be indexed as
documents. Hence, documents are represented through a set of index terms or
keywords. The terms are extracted from the text of the documents. This might be done
automatically or generated by a specialist.

It was estimated in Kowalski [1] that for relatively short documents (e.g., 300-500
words) it normally takes a specialist at least five minutes per item to produce the
terms, while it takes just a few seconds on a moderate computer. The extracted terms
are mainly nouns since they describe better the semantic of the documents while
adjectives, adverbs, and connectives (including transitions, conjunctions…) are less
useful because they work mainly as complements.

These irrelevant terms are usually placed in a file called Stoplist. A Stoplist algorithm
is applied to all the documents in the collection with an objective to eliminate the
terms that have little value to the system. In addition, a word, which occurs in 80% of
the documents in the collection, is useless [2]. An example of 425 stopwords is shown
in a list in Frakes and Baeza-Yates [2]. The remaining terms are stemmed using
Porter's algorithm [3], which brings down distinct words to their grammatical root and
thus reduces further the number of unique terms.

Many attempts were made to improve the structure of the Porter algorithm [4],
however, it still has several drawbacks. In this paper, further improvements are

introduced to overcome these problems in order to enhance the stemming process. We
will refer to the existing Porter algorithm as Porter 2002 and the new as Porter 2004.

2. Porter’s Algorithm

Porter Stemming Algorithm was developed by Martin Porter at the University of
Cambridge in 1980 and was first published in Porter, M.F., [5] and reprinted in
Sparck, Karen, and Peter [6]. As described in the publication, “The Porter stemming
algorithm (or ‘Porter stemmer’) is a process for removing the commoner
morphological and inflexional endings from words in English. Its main use is as part
of a term normalization process that is usually done when setting up Information
Retrieval systems”. Since then it has been very widely used and coded in various
programming languages. It is based mainly on stemming operations that remove
suffixes from words, such as gerunds (motoring motor), plurals (cats cat), and
replacing words ending with "ator" for example with "ate" (operator oper), etc….

These operations are classified into rules where each of these rules deals with a
specific suffix and having certain condition(s) to satisfy. A given word’s suffix is
checked against each rule in a sequential manner until it matches one, and
consequently the conditions in the rule are tested on the stem that may result in a
suffix removal or modification.

3. Drawbacks of the Porter Algorithm

Natural languages are not completely regular constructs, and therefore stemmers
operating on natural words unavoidably make mistakes. For instance, words, which
are distinct, may be wrongly conflated to give similar stems (ex: design design;
designate design, etc...) and affect seriously the retrieval performance of an IR
system since the semantic of the word is expressed differently; these are known as
over-stemming errors. On the other hand, words which ought to be merged together
may remain distinct after stemming (ex: characterizes character; characteristic
characterist, etc…); these are known as under-stemming errors and do not affect the
retrieval performance of an IR system [2]. In this paper we deal with over-stemming
errors.

The modified Porter algorithm was tested on 23,5311 words provided by Porter and
compared to an already existing output provided from the same site. In addition, it
was tested on 45,000 words extracted from the Oxford’s dictionary, and the following
over-stemming errors were observed:

1 http://www.tartarus.org/~martin/PorterStemmer/index.html

http:///

Error #1:
The non-existence of “e” at the end of the words that have m=1 and begin with a
consonant, and end with two consonants; for ex: paste, loathe…:

Paste past
Past past

Error #2:
The removal of “s” in step1 from words ending with “is” such as his and appendicitis:

Appendicitis append
Append append

Error #3:
Words ending with “yed” and “ying” and having different meanings may end up with
the same stem:

Dying dy (impregnate with dye)
Dyed dy (passes away)

Error #4:
The removal of “ic” or “ical” from words having m=2 and ending with a series of
consonant, vowel, consonant, vowel, such as generic, politic…:

Political polit
Politic polit
Polite polit

Error #5:
The removal of the suffix “ative” from all words ending with it and having m=1 or
m=2, the thing that leads to serious conflicts:

Combative comb Generative gener
Comb comb General gener

Error #6:
The removal of the suffix “ness” from all words where m=1 and end with consonant,
vowel, consonant (cvc) such as witness:

Witness wit
Wit wit

Error #7:
The suffix “al” is removed from all words where m=2 e.g. admiral, animal…:

Admiral admir
Admire admir

Error #8:
The elimination of the suffix “eer” from words with m=2 such as engineer:

Engineer engin
Engine engin

Error #9:
The exclusion of the suffix “ible” from all words where m=2 starting by a consonant
and not ending with a series of consonant, vowel, consonant, vowel, such as
responsible:

Responsible respons
Response respons

Error #10:
The exclusion of the suffix “ance” from words with m=2 ending with a series of
consonant, vowel, consonant, vowel:

Severance sever
Several sever

Error #11:
The removal of the suffix “ment” from all words even those ending with “iment”
having m=2 and not ending with a series of consonant, vowel, consonant, vowel; e.g.
experiment:

Experiment experi
Experience experi

Error #12:
The elimination of “ion” from all words where m=2 and not consonant, vowel,
consonant, vowel, without replacement:

Secretion secret
Secret secret

Error #13:
The removal of the suffix “ate” or “nate” from all words where m=2 and ending with
a series of consonant, vowel, consonant, vowel:

Designate design
Design design

Error #14:
The elimination of the suffix “ize” from all words having m=2 and starting by a
consonant, and ending with a series of consonant, vowel, consonant, vowel:

Colonize colon
Colon colon

Error #15:
The exclusion of “itive” from words with m= 1 and starting by consonant, and ending
with a series of consonant, vowel, consonant, vowel:

Positive posit
Position posit

Error #16:
The removal of “iti” from all words where m=2 starting by a vowel and ending with a
series of consonant, vowel, consonant, vowel:

Ameniti amen
Amen amen

The removal of “iti” from all words where m=3 starting by a vowel and not ending
with a series of consonant, vowel, consonant, vowel:

Universiti univers
Universe univers

4. Modifications

The following section describes the corresponding solutions for each of the errors
revealed previously (Table 1 describes the symbols used).

k : Pointer to the last letter in the word
m() : Counts how many consecutive vowel, consonant exist in a word
cons() : Checks whether the letter at a certain position is a consonant or not
ends() : Determines if the word ends with the variable sent and consequently
 truncates this variable from the original word
Table1: Symbol’s Intuitions

Solution #1:

To solve the problem ending with “e” a function is created to keep the “e” at the end
of the word by returning false
If m=1:
Starts with a consonant and ends with two consonants
Paste, loathe, and bottle.

While adding this method, another problem arises for the words such as beaches,
bushes…, so an additional statement is added to step1: If the word ends with “ches”
or with “shes” the program will remove the “es" since in step6 the cvd method is
used.

Beaches beach
Bushes bush

The cvd method is as follow:

 function cvd (int d)
 if cons(d) then
 d := d-1;
 if !cons(d) and d!=0 then
 while !cons(d) and d>0 do
 d := d-1;
 if cons(d) then return true;
 return false;
 return true;

Step1:
 if ends("ches") or ends("shes") then k := k-2;

Solution #2:
If the word ends with “is”, the “s” is not deleted

Appendicitis appendicitis
The statement is:

if ends("is")

Solution #3:
To prevent words ending with “ying” and “yed”, and having different meanings, from
producing the same stem, the “ying” will be set to “i” if it has m=0, starting with
consonant and vowel.

Dying di;
Dyed dy;

The statements are:

if ends("ying) then
 if m()=0 and cons(0) and !cons(1) then setto("i");

Solution #4:
Usually the words that end by “ic” in step3 or “ical” in step4 must be removed but in
other cases it must not. Therefore, if the word is of size m = 2 and consists of a series
of consonant, vowel, consonant, vowel, it is replaced by “ica*” rather than being
removed, then in step5 it is transformed to “ic”.

polite polit,
political politic,
political politic

The statements are:

Step3:
case 'i': if ends("ic") and m()=2 then
 while k > 0 do
 if cons(k) and !cons(k-1) then k := k – 2;
 else j := j + 2; k := j; break;
 if k <= 0 then r("ica*");
 break;
 else break;

Step4:
case 'l': if ends("ical") then
 if m() = 2 then
 while k > 0 do
 if cons(k) and !cons(k-1) then k := k – 2;
 else k := j + 2; r("ic"); break;
 if k <= 0 then r("ica*"); break ;
 else r("ic"); break;

Step5:
if ends ("ica*") then r ("ic"); j := j + 2; break;
else j := k; break;

Solution #5:
If the word ends by “ative” and m = 2, it is replaced by “ate”.

Generative generate
Or if it is m > 2 it is removed.

Authoritative authorit
Or if m = 1 it is replaced by “at”.

Combative combat
The statements are:

if ends("ative") then
 if m() = 2 then r("ate");
 else if m() =1 then r("at");
 else if m() > 2 then r("");

Solution #6:
If the word ends with “ness”, m = 1, and ends with consonant, vowel, and a
consonant, it is kept as it is.

Witness witness
Else it will be removed.

The statements are:

case 's': if ends("ness") then
 if m() == 1 and cvc(k-4) then break;
 else r("");
 break;
 break;

Solution #7:
If it ends by “iral” and m = 2 it is left as it is.

Admiral admiral.
Or if it ends by “al”, m = 2, and it consists of a series of consonant, vowel, consonant,
vowel, it is removed

General gener

Admiral admiral

Else if m >1 it is removed
The statements are:

case 'a': if ends("al") then
 if m() = 2 then
 if ends ("iral") then j := j + 4; break;
 p := p – 2;
 while (p > 0) do
 if cons (p) and !cons(p-1) then p := p – 2;
 else k := j; break;
 if p <= 0 then j := j + 2;
 else if m() > 1 then k := j; break;

Solution #8:

If it ends with “eer” and m = 2, then only the “r” is removed in step4 and
consequently the last “e” is removed in step6

Engineer engine
The statements are:

case 'e': if ends("er") then
 if m()=2 and ends ("eer") then j := j + 2; break;
 else break;
 return

Solution #9:
If it ends with “ible”, m = 2, and starts with a consonant and not ending with a series
of consonant vowel consonant vowel, then it is kept as it is.

Responsible responsible.
Reducible reduc

Or if m> 1 it is removed.
Reprehensible reprehens

The statements are:

if ends("ible") then
 if m()=2 and cons(0) then
 p := p – 4;
 while p > 0 do
 if cons (p) and !cons (p-1) then p := p – 2;
 else j := j + 3; break;
 if p <= 0 then k := j; break;
 else k := j;
 else if m() > 1 then k := j; break;

Solution #10:
If it ends with “ance”, m = 2, and consist of a series of consonant, vowel, consonant,
vowel, therefore, it is replaced by “e”.

Severance severe,
If not, it is removed.

Importance import
The statements are:
case 'c': if ends ("ance") then
 if m() = 2 then
 p := p – 4;
 while p > 0 do
 if cons (p) and !cons(p-1) then p := p – 2;
 else k := j; break;
 if p <= 0 and cons(0) then b[j := j+1]='e'; k := j; break;
 else k := j; break;
 if m() > 1 then k := j; break;

Solution #11:
If it ends with “iment”, m = 2, and not ending with a series of consonant vowel
consonant vowel, therefore, it is left as it is.

Experiment experiment
Or if m> 1 it is removed.

Accompaniment accompani

The statements are:

if ends("iment") and m() = 2 then
 p := p - 5
 while p > 0 do
 if cons(p) and !cons(p-1) then p := p – 2;
 else break;
 if p>0 then j := j + 5; break;
if ends ("ement") then break;
if ends ("ment") then break;

Solution #12:
If it ends with “tion”, m = 2, and not ending with a series of consonant vowel
consonant vowel…, it is replaced with an “e”.

Secretion secrete
Sedition sedit

Or if m> 1 it is removed. The statements are:

if ends("ion") and j >= 0 then
 if b[j] = 't' then
 if m()= 2 then
 p := p – 3;
 while p > 0 do
 if cons (p) and !cons (p-1) then p := p – 2;
 else b[j := j+1] := 'e'; k := j; break;
 if p <= 0 then k := j; break;
 else if m() > 1 then k := j; break;

Solution #13:
If it ends with “nate” or “ate”, m = 2, and ends with a series of consonant vowel
consonant vowel…, it is not replaced.

Designate designate
Or if m> 1, then it is removed.

Collaborate collabor
Or if m = 1, then the “at” is kept

Situate situat
 Or if m = 0, then it is left as it is.

Ate ate

The statements are:
case 't': if ends("nate") and m() = 2 then
 p := p - 4
 while p > 0 do
 if cons (p) and !cons (p-1) p := p – 2;
 else k := j + 1; break;
 if p <= 0 and cons(0) then j := j + 4; break;
 else if ends("ate") then
 if m() = 2 then
 p := p - 3
 while p > 0 do
 if cons (p) and !cons(p-1) then p := p – 2;
 else k := j; break;
 if p<=0 and cons(0) then j := j + 3; break;
 else k := j; break;
 else if m() > 1 then k := j; break;
 else if m() = 1 then j := j + 2; k := j; break;
 else j := j + 3; break;

Solution #14:
If it ends with “ize”, m = 2, and starts with a consonant, and ends with a series of
consonant, vowel, consonant, vowel…, it is kept as it is:

Colonize colonize
Or if m> 1 it is removed.

Aerosolize aerosol
The statements are:

case 'z': if ends("ize") then
 if m() = 2 then
 p := p – 3;
 while p > 0 do
 if cons(p) and !cons(p-1) then p := p – 2;
 else k := j; break;
 if p <= 0 and cons(0) then
 j := j + 3; break;
 else k := j; break;
 else if m() > 1 then k := j; break;

Solution #15:
If it ends with “itive”, m = 1, starts with a consonant, and ends with a series of
consonant, vowel, consonant, vowel…, it is kept as it is:

Positive positive
Or if m> 1 it is removed.

Acquisitive acquisit

The statements are:

case ‘v': if ends("itive") and m() = 1 and cons(0) Then
 p := p – 5;
 while p > 0 do
 if cons(p) and !cons(p-1) then p := p – 2;
 else j := j + 2; k := j; break;
 if p <= 0 and cons(0) then j := j + 5; break;
 else k := j; break;
 else if ends("ive") break;
return;

Solution #16:
If it ends with “iti”, m = 2, starts with a vowel, and ends with a series of consonant,
vowel, consonant, vowel…, it is kept as it is:

amenity ameniti
If it ends with “iti”, m = 3, starts with a vowel, and ends with a series of consonant,
vowel, consonant, vowel…, it is kept as it is:

Universiti universiti
Or if m> 1 it is removed

Minority minor

The statements are:

if ends ("iti") then
 if m() = 2 then
 p := p – 3;
 while p > 0 do
 if cons (p) and !cons(p-1) then p := p – 2;
 else k := j; break;
 if p <= 0 and !cons(0) then j := j + 3; break;
 else k := j; break;
 else if m() = 3 and !cons(0) then
 p := p - 3
 while p > 0 do
 if cons(p) and !cons (p-1) then p := p – 2;
 else j := j + 3; break;
 if p <= 0 and !cons(0) then k := j; break;
 else k := j; break;
 else if m() > 1 then k := j; break;

Exceptions:
Some of the words are considered as exception to the previously described rules, and
therefore are treated separately. The following step contains the words that must keep
their “e” while removing the “ing” or the “ed”.

Loathing loathe
Pasted paste

function step0()
 String s1=new String(b);
 String s2=new String("rang secret loath past us butt");
 if s2.regionMatches(s2.indexOf(b[0]),s1,0,j+1) then
 return true;
 else return false;

5. Experiments

The previously described solutions produce different results than the existing Porter
algorithm. Outputs from both Porter 2002 and 2004 are put alongside in Appendix to
demonstrate the dissimilarities.

The two techniques were tested against CISI [7], which is a standards test collection
that contains 1460 documents, in an attempt to move more relevant documents (the
ones found in the queries’ relevance judgments) further up the ranking. The result
showed a slight improvement (1.5%) in precision and recall, however for some
queries the improvement was 2.5%. The percentage is computed as an average for the
precision and recall produced by the 30 queries that come with the collection. The
results are illustrated in Figure 1 using the 11-point average curve.

CISI Test Collection
Precision

Figure 1: 11 point Average Curve

0
0.1
0.2
0.3

0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.2 0.9 1 0 0.3 0.4 0.5 0.6 0.7 0.8
Recall

Porter 2002 Porter 2004

References

1. Kowalski G. (1997) “Information Retrieval Systems: Theory and Implementation”, Kluwer

Academic Publisher, 1997. id387

2. Baeza-Yates R. and Ribeiro-Neto B. (1999) “Modern Information Retrieval”. New York:

Addison Wesley

3. Frakes W. B. and Baeza-Yates R. (1992) “Information Retrieval: Data Structures and

Algorithms”. Englewood Cliffs, NJ: Prentice-Hall. id175

4. Porter, M.F., (2002) “Developing the English Stemmer”, http://snowball.tartarus.org/.

5. Porter, M.F., (1980), “An Algorithm for Suffix Stripping”, Program, 14(3) :130-137.

6. Sparck Jones, Karen, and Peter Willet, (1997), “Readings in Information Retrieval”, San

Francisco: Morgan Kaufmann, ISBN 1-55860-454-4.

7. CISI-collection. The CISI reference collection for information retrieval. 1460 documents and

30 queries, http://local.dcs.gla.ac.uk/idom/ir_resources/test-collections/cisi/, 1981

http://snowball.tartarus.org/

Appendix: Dissimilarities between existing and new algorithm

Word Porter02 Porter04 Word Porter02 Porter04 Word Porter02 Porter04
abl abl abl bath bath bath elles ell elle
able abl able bathed bath bath engine engin engin
ach ach ach bathing bath bath engines engin engin
ached ach ach baths bath bath engineer engin engine
aches ach ach bathe bath bathe engineering engin engine
aching ach ach bathes bath bathe even even even
ache ach ache bell bell bell evening even even
ad ad ad belled bell bell evenly even even
add add add belling bell bell evenness even even
added ad add bells bell bell evenings even evening
adding ad add belle bell belle fill fill fill
adds add add bonn bonn bonn filled fill fill
abl abl abl bonne bonn bonne filling fill fill
able abl able born born born fills fill fill
ach ach ach borne born borne fille fill fille
ached ach ach brown brown brown fort fort fort
aches ach ach browning brown brown forts fort fort
aching ach ach browns brown brown forte fort forte
ache ach ache browne brown browne forty forti forti
ad ad ad bush bush bush fortis forti fortis
add add add bushes bush bush front front front
added ad add bushe bush bushe fronted front front
adding ad add call call call fronting front front
adds add add called call call fronts front front
admirable admir admir calling call call fronte front fronte
admirably admir admir calls call call funeral funer funeral
admiration admir admir calle call calle funerals funer funeral
admire admir admir cloth cloth cloth funereal funer funere
admired admir admir clothed cloth cloth futur futur futur
admirer admir admir clothing cloth cloth future futur future
admirers admir admir cloths cloth cloth futures futur future
admires admir admir clothe cloth clothe gang gang gang
admiring admir admir clothes cloth clothe ganging gang gang
admiringly admir admir cross cross cross gangs gang gang
admiral admir admiral crossed cross cross ganges gang gange
amen amen amen crosses cross cross generous generous gener
amenable amen amen crossing cross cross generousness (none) gener
amenities (none) amen crosse cross crosse generously generous gener
amenity (none) amen dank dank dank general general general
and and and danke dank danke generalities general general
ande and ande design design design generality general general
andes andes ande designed design design generalization general general
animate anim anim designer design design generally general general
animated anim anim designing design design generality (none) general
animates anim anim designs design design generalizations (none) general
animating anim anim designates design designat generalize (none) general
animation anim anim designation design designat generalized (none) general
animal anim animal ear ear ear generalizer (none) general
animalized anim animal eared ear ear generalizers (none) general
animals anim animal earings ear earing generalizes (none) general
Ann ann ann ell ell ell generalizing (none) general
anne ann anne elle ell elle generals general general

Word Porter02 Porter04 Word Porter02 Porter04 Word Porter02 Porter04
generate generat generat mont mont mont responsibilities respons responsibl
generated generat generat monte mont monte responsibility respons responsibl
generation generat generat montes mont monte responsible respons responsibl
generates (none) generat numerous numer numer responsive respons respons
generating (none) generat numerical numer numeric roll roll roll
generative (none) generat of of of rolle roll rolle
generator (none) generat off off off rolled roll roll
generators (none) generat offing of off rolling roll roll
generations generat generat offe off offe rollings roll rolling
generic generic generic past past past rolls roll roll
generically (none) generic pasted past paste round round round
goeth Goeth goeth moral moral moral rounde round rounde
goethe goeth goethe morality moral moral rounded round round
grande grand grande moralities moral moral rounding round round
grandee grande grande morale moral morale roundly round round
grandees grande grande morally moral moral roundness round round
hand hand hand morals moral moral rounds round round
handed hand hand petulance petul petule relax relax relax
handful hand hand petulant petul petul relaxe relax relaxe
handfuls hand hand petulantly petul petul relaxes relax relaxe
handing hand hand petulance petul petule remain remain remain
hands hand hand petulant petul petul remaine remain remaine
hande hand hande petulantly petul petul singeing sing singe
hast hast hast picture pictur picture singing sing sing
haste hast haste pictured pictur pictur sings sing sing
her her her pictures pictur picture scienc scienc scienc
hers her her picturing pictur pictur science scienc science
herrings her herring pierce pierc pierce sciences scienc science
hing hing hing pierced pierc pierc secrete secret secrete
hinges hing hinge pierces pierc pierce secreted secret secrete
host host host piercing pierc pierc secretes secret secrete
hosts host host piercingly pierc pierc secreting secret secrete
hoste host hoste position posit posit secretion secret secrete
however howev howev positions posit posit secretly secret secret
howeve howev howeve positive posit positiv secrets secret secret
iron iron iron positively posit positiv sever sever sever
ironed iron iron positiveness posit positiv severa severa severa
ironing iron iron private privat privat several sever several
irons iron iron privateer privat private severally sever several
irony ironi ironi privately privat privat severe sever severe
ironical iron ironic privation privat privat severed sever sever
ironically iron ironic privations privat privat severely sever severe
later later later proceed proceed proce severer sever sever
lateral later lateral proceeds proce proceed severity sever sever
laterally later lateral rang rang rang sooth sooth sooth
loath loath loath range rang range soothe sooth soothe
loathe loath loathe ranged rang range soothed sooth sooth
loathed loath loathe rangees range range soothing sooth sooth
loathing loath loathe ranges rang range soothingly sooth sooth
lungs lung lung ranging rang range start start start
lunge lung lunge regal regal regal starte start starte
missy missi missi regale regal regale started start start
missis missi missis regaled regal regal starting start start
mond mond mond regaling regal regal startings start starting
monde mond monde response respons respons starts start start

Word Porter02 Porter04 Word Porter02 Porter04 Word Porter02 Porter04
stern stern stern sternness stern stern witnesses wit witness
sterne stern sterne wit wit wit witnessing wit witness
sternly stern stern witness wit witness wits wit wit
 witnessed wit witness witted wit wit

	3. Drawbacks of the Porter Algorithm
	4. Modifications
	5. Experiments
	Appendix: Dissimilarities between existing and new algorithm

