
Wrapper Generation with Patricia Trees

Sven Meyer zu Eißen Benno Stein

smze@upb.de stein@upb.de

Paderborn University
Department of Computer Science

D-33095 Paderborn, Germany

Abstract The automatic processing of search results that stem from Web-based
search interfaces has come into focus, and it will remain important (as long as
XML is not a universally applied technology). The reasons for this are twofold:
(1) The need for value-added services such as filtering or graphical preparation of
search results will increase. (2) The manual creation of tailored parsers for the in-
formation extraction from HTML pages cannot keep pace with the fast changing
presentation of the search results in right these pages.

Automatic wrapper generation addresses this problem. It means the construction
of a tailored parser for a certain type of HTML page with a minimum of man-
ual intervention. This paper introduces the state of the art and presents an own
development: A two-stage approach that combines highly efficient suffix match-
ing based on a modified Patricia tree along with a knowledge-based analysis of
candidate token sequences.

Key words: Information Extraction, Automatic Wrapper Generation,
Wrapper Induction, Web Mining, Information Retrieval

1 Introduction

Web-based search interfaces are widely used as front-ends for information sources such
as Web search engines, digital libraries, online shops, and other types of databases.
Starting with a keyword search, they generate HTML result pages that contain a list
of the found records. Such a semi-structured representation may be adequate for a hu-
man reader of this page; however, it is difficult to be further processed by applications
that provide value-added services such as filtering, grouping, re-arranging, or graphical
preparation: The generated record lists are not directly machine-readable and need to
be “disrobed” of their wrapping code. Figure 1 shows an example.

Automatic wrapper generation deals with this problem; it aims at the automatic
construction of a parser that extracts the interesting information by finding records and
eliminating superfluous HTML code.1 The following list mentions several challenges
for automatic wrapper generation, and it also shows its importance for value-adding
services.

1 The term “automatic wrapper generation” may be misleading; perhaps a better description is
“automatic parser generation for wrapping code”.

Turing Test

Header
information

T-Online
specific
topics

Additional
navigation
features

Interesting
result list

Advertisment

Figure 1. The snapshot shows a clipping of the T-Online search interface. For a subsequent pro-
cessing of the search results a special block (bottom middle) has to be found as well as correctly
parsed.

(1) A result list of records is embedded in header and footer information, which typi-
cally contains HTML code for navigation, logos, copyright notices, advertisements,
etc.

(2) Each search interface brings along its own concept of wrapping its records, which
includes particular font styles, enumeration styles, etc.

(3) The data structure within a record may vary with respect to presentation and data
element constraints.

(4) Recurring navigational information like “search more of this” may be contained
within a record.

(5) Structure and presentation of a generated list may change every now and then, when
the provider modifies the design of the presentation.

The paper in hand is devoted to this problem; more specifically, it focuses on the ex-
traction of records from Web search engines. This work is also related to our AIsearch
project where search results from different information sources are grouped themati-
cally within a categorization step [15, 18]. In this context, especially Point 5 is of a high
importance, since we experience the generated HTML pages to change frequently. 2

We present a two-stage approach that combines highly efficient suffix matching
based on a modified Patricia tree with a knowledge-based analysis of candidate token

2 This in turn means that human intervention becomes necessary to adapt in AIsearch the re-
spective parser code for this information source.

sequences. The remainder of this paper is organized as follows. The next subsection
gives an overview of existing approaches to automatic wrapper generation. Section 2
introduces our approach, and Section 3 presents some analysis results.

1.1 Classification of Existing Approaches

To hand-craft a tailored information extraction algorithm may be acceptable for a small
number of search interfaces; however, in the long run it constitutes a considerable over-
head: For each information source, a programmer must identify characteristic HTML
patterns that wrap interesting data records, the so-called “extraction patterns”, and use
them to write a parser. This procedure is tedious and error-prone, and a small change in
the design of a result page often renders hand-crafted parsers defective.

For this reason automatic information extraction algorithms have been developed in
the last years. They can be divided into wrapper generation algorithms, wrapper ver-
ification algorithms, and wrapper re-induction algorithms [9]. Among these, wrapper
generation algorithms are the best investigated ones. Their goal is to generate dedi-
cated programs or program parameters like grammars or patterns, which can be used to
identify record boundaries within result pages of a particular source.

Supervised wrapper generation algorithms3 learn extraction patterns from a set of
training documents wherein records or attribute boundaries have been labeled manually.
The majority of these methods represent the patterns as a finite state machine, e. g. as
a grammar, a regular expression, or in the form of a hidden Markov model [11, 1, 7,
3, 17, 5]. The underlying pattern identification algorithms include inductive and active
learning strategies [10, 4].

Unsupervised techniques overcome the need to manually label training documents.
The approach of Gao et al. uses a set of result pages from the same source and identifies
a region that has a “tabular” structure [6]. Based on this table, candidate extraction
patterns that will match the rows are inferred. Another system, called IEPAD, discovers
repetitive patterns within a result page by means of a Patricia tree and proposes some
of them as record candidates [2]. Liu et al. present an approach to extract data from
HTML tables, which is based on the analysis of the parse tree of a Web site.

The task of wrapper verification algorithms is to check whether a generated wrapper
still behaves as intended, or if design changes within its associated information source
lead to a malfunctioning. Kushmerick et al. propose an algorithm that learns a proba-
bilistic model of the extracted data during the training period, which captures data type
characteristics like the fraction of numeric attributes within a record [8]. A significant
change of the expected data type characteristics in a result page is interpreted as a de-
sign change, and intervention may become necessary. Given the case that a verification
algorithm determines a malfunctioning of a wrapper, so-called wrapper re-induction
algorithms come into play. Lerman and Minton propose a semi-automatic algorithm
that also learns a probabilistic model of the data during a training period [12]. If the
learned model does not fit the extracted data of a result page any longer, their algorithm
maps expected attributes onto data fields within the records of the modified result page
probabilistically.

3 This class of algorithms is also known as semi-automatic wrapper generation algorithms.

HTML result page

a:act ive
 a: l ink, . t a:act ive,{background-color :#e{background-color :#3 {width:34em}
 {color :#36c}
 . i : l ink{color :#a90a08} .a, .a: l ink{color :#008000} .z{display:none} iv.n {margin-top: 1ex} n a{font-s ize:10pt; color :#0 n . i { font-s ize:10pt; font-weight:bold} q a:v is i ted, .q a: l ink, .q a:ac { font-s ize: 12pt; color :#00c; ch{cursor :pointer ;cursor :hand} {margin-top: .75em; margin

Pattern table T

THTLATA 7 5 (3,1)
ASTHTLATA 9 4 (7,2)
AATTTTHTLATA 12 2 (3,1)
TLATA 5 5 (2,1)
THTTLATSA 9 3 (3,1)
TTTHTL 6 3 (5,2)
SSTHTLATA 9 2 (9,4)
THTL 4 2 (5,3)
...

Token
pattern Len. Freq. Distr.

Knowledge-based
post-processing

Interesting
pattern

Patricia tree
analysis

Figure 2. Two-stage approach to automatic wrapper generation: The identification of candidate
patterns with a Patricia tree is coupled with a knowledge-based post-processing to find among the
candidate patterns the most likely one(s).

In the literature on the subject the term “automatic” refers to the degree of automa-
tion in a wrapper generation algorithm for a given source at a given time. As pointed
out above, the challenge in a meta-search situation is to construct a parser that is robust
against changes of result pages in time. This is what we call adaptive.

2 Adaptive Wrapper Generation for Search Engines

Result pages of search engines contain several regular structures; one of these structures
is the list with the snippets that characterize the matching documents for the query and
which we would like to identify. A regular structure contains sequences that are tagged
in a uniform way. For example at Lycos,4 a snippet is wrapped in the following code:

<a>TEXT
TEXTTEXT<a>TEXT

If one considers the n suffix strings that can be formed from a given HTML page
of length n, several among these suffixes start with the same prefix. 5 When inserting
the suffixes in a Trie,6 multiple occurrences of the prefixes can be efficiently detected.
Since in an HTML result page several hundreds of such recurring patterns can be found,
additional knowledge must be employed to detect those few patterns that actually wrap
the interesting snippets. This observation suggests a two-stage approach for pattern
identification (cf. Figure 2):

(1) Creation of a table T with candidate patterns.
(2) Knowledge-based post-processing of T to identify the interesting pattern(s).

However, a necessary prerequisite is the tokenization of an HTML page, which
provides us with a string S of tokens. There is the question of how fine-grained the text

4 http://www.lycos.de
5 A suffix of a string S is a substring of S that starts at some position i ≤ |S| and ends at

position |S|.
6 The term “Trie” is derived from the terms “tree”, “information”, and “retrieval” and designates

an index structure for efficient text search [19].

n|m
n = Discriminating byte
m = Discriminating bit

⊥

0|2

0|0

1|1

1|1

dirty dog

cat

cool

Figure 3. A Patricia tree that contains the words “cool”, “cat”, “dirty”, and “dog”. For perfor-
mance reasons the discriminating position is encoded as a pair of byte and bit position.

elements in the HTML page shall be distinguished. Chang and Lui distinguish merely
two tokens, namely “HTML tag” and “plain text” [2]; to leave more flexibility for the
knowledge-based post-processing step we currently support about 130 different tokens.

2.1 Table Creation

Let S be a string (of tokens) of length n. As mentioned above, a Trie provides an effi-
cient means to set up a table of candidate patterns. The theoretically optimum algorithm
for constructing an index of all suffixes for S is the suffix tree [14]; its runtime is linear
in the length of S. A naive algorithm would generate the n suffix strings of S and insert
them in a standard Trie, which results in a runtime of O(n2).

Our approach is oriented at the naive algorithm: However, the n suffixes of S are
not generated explicitly but “read off” by moving an index from 1 to n over S. Every
suffix is identified by its starting position, and a Patricia tree (explained below) is used
to identify all suffixes that start with the same token sequence. Though the theoretical
runtime still is O(n2) this approach will behave even more efficient than a suffix tree
implementation, except for a few pathological cases. 7

A Patricia tree8 is a particular digital search tree that has two salient properties:
(1) Each inner node in the tree is used for differentiation purposes, say, each inner node
has two successors. (2) The keys (strings) are not stored into leafs but into inner nodes,
which saves half of the nodes. A Patricia tree has the characteristic of digital search
trees in that its structure is independent of the insertion sequence. A digital search tree
considers keys as bit sequences; an inner node defines the position of the key that shall
be investigated for discrimination purposes. Figure 3 gives an example.

From a Patricia tree all repeating sequences in the token string S can be collected
in O(n) runtime and put into a table T .

7 Rationale for this behavior is that the length of the longest common subsequence in a tokenized
HTML page can be assessed by a constant.

8 The term “Patricia” is an acronym for “practical algorithm to retrieve information coded in
alphanumeric”. The data structure was proposed by Morrison [16].

2.2 Table Post-Processing

Typically the table T of candidate patterns contains more than hundred entries. For re-
liable identification of the interesting element, all patterns (token sequences) are char-
acterized by several features. The most important ones are: pattern length, pattern fre-
quency, pattern distribution, average pattern distance.

This information is used within heuristic rules that assign positive and negative
evidence values to the patterns—example:

IF length(p)*frequency(p)/n > 0.2 THEN raise evidence(p, 2)

Here p ∈ T designates a pattern; the rule assesses the portion by which p covers the
entire token string S. In our current implementation, which focuses on HTML result
pages of search engines, the evidence values can be estimated; nevertheless, it is planned
to acquire them by a machine learning approach soon.

3 Quantitative Analysis

Adaptive wrappers are generated on the fly, in extreme cases each time a search result
is delivered from a search engine. I. e., performance analyses are not only interesting
with respect to extraction quality, but also with respect to wrapper generation time. We
did some analyses in this connection, based on a test corpus with about 100 generated
result pages for several popular search engines. Our wrapper implementation is done
in Java, and the experiments were conducted on a Pentium IV 1.2 GHz system running
RedHat Linux.

Amount of Tokenization Patricia tree Pattern Pattern Total
sample pages generation extraction analysis

28KB 121 ms 23 ms 32ms 19ms 195ms

Table 1. Average runtime of different steps in the course of adaptive wrapper generation.

Table 1 shows the averaged runtime for wrapper generation for one result page. The
tokenization of the result pages took over 60% of the total runtime, since we used a
generic HTML parser that was not optimized for our tokenization step. The heuristic
ranking of relevant patterns within the created table T was always very good, and thus
explains the low pattern analysis time. Due to the fact that a wrapper verification algo-
rithm also has to parse and analyze a result page, we do not expect substantial runtime
differences between both approaches. Note that it is conceivable to generate an adaptive
wrapper on the client machine of a user, in a stand-alone meta search application.

AltaVista Lycos Netscape

≈ 80% ≈ 90% ≈ 90%

Table 2. Portion of correctly identified result lists. Basis were about 100 different result pages for
each of the mentioned search engines.

a:act ive
 a: l ink, . t a:act ive,{background-color :#e{background-color :#3 {width:34em}
 {color :#36c}
 . i : l ink{color :#a90a08} .a, .a: l ink{color :#008000} .z{display:none}
 iv.n {margin-top: 1ex} n a{font-s ize:10pt; color :#0 n . i { font-s ize:10pt; font-weight:bold} q a:v is i ted, .q a: l ink, .q a:ac { font-s ize: 12pt; color :#00c; ch{cursor :pointer ;cursor :hand}

THTLATA 7 5 (3,1)
ASTHTLATA 9 4 (7,2)
AATTTTHTLATA 12 2 (3,1)
TLATA 5 5 (2,1)
THTTLATSA 9 3 (3,1)
TTTHTL 6 3 (5,2)
SSTHTLATA 9 2 (9,4)
THTL 4 2 (5,3)
...

Token
pattern Len. Freq. Distr.

Base-type-specific
post-processing

Interesting
pattern

Identification
of base type

......

Figure 4. If the process of automatic wrapper generation is organized as a three-stage approach,
the knowledge-based post-processing step gains twice: It becomes more effective and easier to
be implemented.

Table 2 contains some classification results. The post-processing was able to iden-
tify most of the records. However, we employed the knowledge that a record at least
contains a URL and a headline.

4 Current Work

The two-stage approach to wrapper generation presented in this paper provides a high
degree of flexibility. Nevertheless, the knowledge-based post-processing step becomes
more and more intricate with the number of different information sources that shall be
handled.

It would be useful in this connection, if a certain “result page base type” is recog-
nized in advance, such as “Shop” or “Link List”, and a dedicated set of rules is chosen
and applied in the knowledge-based post-processing step (see Figure 4). In our current
work we investigate how the necessary recognition step can be realized by learning a
fingerprint from the pattern table.

Moreover, we are developing measures of robustness and flexibility for a generated
wrapper in order to prognose both (1) its reliability when parsing HTML pages from in-
formation sources the parser was not designed for, and (2) the expected malfunctioning
rate depending of extent of modifications of the HTML page.

References

[1] Naveen Ashish and Craig Knoblock. Wrapper Generation for Semi-Structured
Internet sources. SIGMOD Rec., 26(4):8–15, 1997. ISSN 0163-5808.

[2] Chia-Hui Chang and Shao-Chen Lui. IEPAD: Information Extraction Based on
Pattern Discovery. In Proceedings of the Tenth International Conference on
World Wide Web, pages 681–688. ACM Press, 2001. ISBN 1-58113-348-0.

[3] B. Chidlovskii, J. Ragetli, and M. de Rijke. Automatic Wrapper Generation for
Web Search Engines. In Proceedings WAIM’00, LNCS. Springer, 2000.

[4] A. Finn and N. Kushmerick. Active Learning Selection Strategies for
Information Extraction. In ECML-2003 Workshop on Adaptive Text Extraction &
Mining, 2003.

[5] Dayne Freitag and Nicholas Kushmerick. Boosted Wrapper Induction. In
Proceedings of the Seventeenth National Conference on Artificial Intelligence
and Twelfth Conference on Innovative Applications of Artificial Intelligence,
pages 577–583. AAAI Press / The MIT Press, 2000. ISBN 0-262-51112-6.

[6] X. Gao, M. Zhang, and P. Andreae. Learning Information Extraction Patterns
from Tabular Web Pages without Manual Labeling. Technical report, Victoria
University of Wellington, 2003.

[7] C. N. Hsu and C. C. Chang. Finite-State Transducers for Semi-Structured Text
Mining. In Proceedings of IJCAI-99 Workshop on Text Mining: Foundations,
Techniques and Applications. Pergamon Press, 1999.

[8] N. Kushmerick. Wrapper Verification. World Wide Web Journal, 3(2):79–94,
2000.

[9] N. Kushmerick and B. Thomas. Adaptive Information Extraction: Core
Technologies for Information Agents. In Intelligent Information Agents R&D in
Europe: An AgentLink perspective, 2002.

[10] N. Kushmerick, D. Weld, and B. Doorenbos. Wrapper Induction for Information
Extraction. In Proceedings of IJCAI-97, 1997.

[11] Nicholas Kushmerick and Daniel S. Weld. Wrapper Induction for Information
Extraction. PhD thesis, Department of Computer Science & Engineering,
University of Washington, 1997.

[12] Kristina Lerman and Steven Minton. Learning the Common Structure of Data. In
Proceedings of the Seventeenth National Conference on Artificial Intelligence
and Twelfth Conference on Innovative Applications of Artificial Intelligence,
pages 609–614. AAAI Press / The MIT Press, 2000. ISBN 0-262-51112-6.

[13] Bing Liu, Robert Grossman, and Yanhong Zhai. Mining Data Records in Web
Pages. In Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 601–606. ACM Press, 2003.
ISBN 1-58113-737-0.

[14] E. McCreight. A Space-Economical Suffix Tree Construction Algorithm.
Journal of the ACM, 23(2):262–272, 1976.

[15] Sven Meyer zu Eißen and Benno Stein. The AIsearch Meta Search Engine
Prototype. In Amit Basu and Soumitra Dutta, editors, Proceedings of the 12th
Workshop on Information Technology and Systems (WITS 02), Barcelona Spain.
Technical University of Barcelona, December 2002.

[16] D. R. Morrison. PATRICIA—Practical Algorithm to Retrieve Information Coded
in Alphanumeric. Journal of the ACM, 15(4):514–534, October 1968.

[17] Stephen Soderland. Learning Information Extraction Rules for Semi-Structured
and Free Text. Machine Learning, 34(1-3):233–272, 1999. ISSN 0885-6125.

[18] Benno Stein and Sven Meyer zu Eißen. AIsearch Homepage.
http://www.aisearch.de, 2003-2004.

[19] G. Stephen. String Searching Algorithms. World Scientific, 1994.

