
Experiments in Document Clustering using
Cluster Specific Term Weights

Christian Borgelt and Andreas Nürnberger

Dept. of Knowledge Processing and Language Engineering
Otto-von-Guericke-University of Magdeburg
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Abstract. We study methods to initialize or bias different clustering
methods using prior information about the “importance” of a keyword
w.r.t. to the specific clusters. These studies give us hints on how to
initialize clustering methods in order to improve the clustering perfor-
mance if prior knowledge is available. This can be especially useful if a
user-specific clustering of a document collection or web search result set
is desired.

1 Introduction

The problem of finding descriptive weights for terms in document collections in
order to improve retrieval performance has been studied extensively in the past
(see, for instance, [12, 24, 23]). To achieve an improved classification or clustering
performance for a given text collection, it is usually necessary to select a subset
of all describing features (i.e. keywords) and/or to re-weight the features w.r.t.
a specific classification or clustering goal. Consequently, several studies were
conducted in this direction. For example, it was explored how to select keywords
based on statistical and information theoretical measures [9, 21, 28] or how to
combine clustering and keyword weighting techniques [10] in order to improve
the clustering performance.

In prior work we studied different hard and fuzzy clustering methods with and
without variances [5]. These experiments indicated that the use of variances—
which can be considered as a method for cluster specific keyword weighting—
can improve the clustering performance. Nevertheless, it is still unclear to what
extent term re-weighting influences the clustering performance and whether
initial—global or cluster specific—term re-weighting can be used to bias or im-
prove the performance. Therefore, in the following, we compare clustering with
and without term re-weighting techniques using different hard and fuzzy clus-
tering methods.

This paper is organized as follows: In Section 2 we briefly review some basics
of fuzzy clustering and a fuzzified version of learning vector quantization. In
Section 3 we review pre-processing methods for documents and in particular
the vector space model, which we use to represent documents. In Section 4 we



present our experimental results of clustering web page collections using different
global and cluster-specific term weighting approaches and finally, in Section 5,
we draw conclusions from our discussion.

2 Clustering

The best-known classical prototype based hard clustering methods are c-means
clustering [7, 4] and learning vector quantization [17, 18]. In the following, we
briefly describe their generalizations to fuzzy clustering and fuzzified learning
vector quantization as we use it in our experiments. For a more detailed discus-
sion and evaluation of these methods for document clustering see [5].

2.1 Fuzzy Clustering

While most classical clustering algorithms assign each datum to exactly one
cluster, thus forming a crisp partition of the given data, fuzzy clustering allows
for degrees of membership, to which a datum belongs to different clusters [1, 2, 14].
Most fuzzy clustering algorithms are objective function based: they determine
an optimal (fuzzy) partition of a given data set X = {xj | j = 1, . . . , n} into
c clusters by minimizing an objective function

J(X,U,C) =
c∑

i=1

n∑
j=1

uw
ijd

2
ij

subject to the constraints

∀i; 1 ≤ i ≤ c :
n∑

j=1

uij > 0, and ∀j; 1 ≤ j ≤ n :
c∑

i=1

uij = 1,

where uij ∈ [0, 1] is the membership degree of datum xj to cluster i and dij is the
distance between datum xj and cluster i. The c × n matrix U = (uij) is called
the fuzzy partition matrix and C describes the set of clusters by stating location
parameters (i.e. the cluster center) and maybe size and shape parameters for each
cluster. The parameter w, w > 1, is called the fuzzifier or weighting exponent.
It determines the “fuzziness” of the classification: with higher values for w the
boundaries between the clusters become softer, with lower values they get harder.
Usually w = 2 is chosen. Hard clustering results in the limit for w → 1. However,
a hard assignment may also be determined from a fuzzy result by assigning each
data point to the cluster to which it has the highest degree of membership.

Since the objective function J cannot be minimized directly, an iterative
algorithm is used, which alternately optimizes the membership degrees and the
cluster parameters [1, 2, 14]. That is, first the membership degrees are optimized
for fixed cluster parameters, then the cluster parameters are optimized for fixed
membership degrees. The main advantage of this scheme is that in each of the
two steps the optimum can be computed directly. By iterating the two steps



the joint optimum is approached (although, of course, it cannot be guaranteed
that the global optimum will be reached—the algorithm may get stuck in a
local minimum of the objective function J). The update formulae are derived by
simply setting the derivative of the objective function J w.r.t. the parameters
to optimize equal to zero (necessary condition for a minimum).

Depending on the distance measure used, several different fuzzy clustering
algorithms can be distinguished. Classical fuzzy c-means clustering employs the
Euclidean distance, while Gustafson-Kessel algorithm [13] uses the Mahalanobis
distance and the fuzzy maximum likelihood estimation (FMLE) algorithm [11] is
based on the assumption that the data was sampled from a mixture of c multi-
variate normal distributions as in the statistical approach of mixture models [8,
3]. It is worth noting that of both the Gustafson-Kessel as well as the FMLE al-
gorithm there exist so-called axes-parallel versions, which restrict the covariance
matrices to diagonal matrices and thus allow only axes-parallel ellipsoids [15].
These variants have certain advantages w.r.t. robustness and execution time.

2.2 Learning Vector Quantization

Learning vector quantization [17, 18], in its classical form, is a competitive learn-
ing algorithm that has been developed in the area of artificial neural networks
and that can be applied to classified as well as unclassified data. Here we con-
fine ourselves to unclassified data, where the algorithm consists in iteratively
updating a set of c so-called reference vectors µi, i = 1, . . . , c, each of which
is represented by a neuron. For each data point xj , j = 1, . . . , n, the closest
reference vector (the so-called “winner neuron”) is determined and then this
reference vector (and only this vector) is updated according to

µ
(new)
i = µ

(old)
i + η1

(
xj − µ

(old)
i

)
, (1)

where η1 is a learning rate. This learning rate usually decreases with time in
order to avoid oscillations and to enforce the convergence of the algorithm.

Membership degrees can be introduced into this basic algorithm in two dif-
ferent ways. In the first place, one may employ an activation function for the
neurons, for which a radial function like the

Cauchy function f(r) =
1

1 + r2
or the Gaussian function f(r) = e−

1
2 r2

may be chosen, where r is the (radial) distance from the reference vector. In this
case all reference vectors are updated for each data point, with the update being
weighted with the value of the activation function. However, this scheme, which is
closely related to possibilistic fuzzy clustering [19], usually leads to unsatisfactory
results, since there is no dependence between the clusters, so that they tend to
end up at the center of gravity of all data points. This corresponds to the fact
that in possibilistic fuzzy clustering the objective function is truly minimized
only if all cluster centers are identical [27]. Useful results are obtained only if
the method gets stuck in a local minimum, which is an undesirable situation.



An alternative is to rely on a normalization scheme as in probabilistic fuzzy
clustering, that is, to compute the weight for the update of a reference vector
as the relative inverse (squared) distance from this vector, or as the relative
activation of a neuron. This is the approach we employ here.

Furthermore we associate with each neuron not only a reference vector µi,
but also a covariance matrix Σi, which describes the shape and (if we do not
require it to be normalized to determinant 1) the size of the represented cluster.
A derivation of the update rule for this covariance matrix can be found in [5]. It
should be noted that versions of this algorithm that require the covariance matrix
to be normalized to determinant 1 or restrict the covariance matrix to a diagonal
matrix may be considered, too. Such constraints can improve the robustness or
the execution time of the algorithm. Finally it should be noted that the updates
may be executed in batch mode, aggregating the changes resulting from the data
points and actually updating the reference vectors and covariance matrices only
at the end of an epoch.

3 Clustering Document Collections

To be able to cluster text document collections with the methods discussed
above, we have to map the text files to numerical feature vectors. Therefore,
we first applied standard preprocessing methods, i.e., stopword filtering and
stemming (using the Porter Stemmer [22]), encoded each document using the
vector space model [23] and finally selected a subset of terms as features for the
clustering process as briefly described in the following.

3.1 The Vector Space Model

The vector space model represents text documents as vectors in an m-dimen-
sional space, i.e., each document j is described by a numerical feature vector xj =
(xj1, . . . , xjm). Each element of the vector represents a word of the document
collection, i.e., the size of the vector is defined by the number of words of the
complete document collection.

For a given document j the so-called weight xjk defines the importance of the
word k in this document with respect to the given document collection C. Large
weights are assigned to terms that are frequent in relevant documents but rare in
the whole document collection [24]. Thus a weight xjk for a term k in document j
is computed as the term frequency tfjk times the inverse document frequency
idfk, which describes the term specificity within the document collection.

In [25] a weighting scheme was proposed that has meanwhile proven its usabil-
ity in practice. Besides term frequency and inverse document frequency (defined
as idfk = log(n/nk)), a length normalization factor is used to ensure that all
documents have equal chances of being retrieved independent of their lengths:

xjk =
tfjk log n

nk√∑m
l=1

(
tfjl log n

nl

)2
, (2)



where n is the size of the document collection C, nk the number of documents
in C that contain term k, and m the number of terms that are considered.

Based on a weighting scheme a document j is described by an m-dimensional
vector xj = (xj1, . . . , xjm) of term weights and the similarity S of two documents
(or the similarity of a document and a query vector) can be computed based on
the inner product of the vectors (by which—if we assume normalized vectors—
the cosine between the two document vectors is computed), i.e.

S(xj , xk) =
m∑

l=1

xjl · xkl. (3)

For a more detailed discussion of the vector space model and weighting schemes
see, for instance, [12, 24, 23].

Note that for normalized vectors the scalar product is not much different in
behavior from the Euclidean distance, since for two vectors x and y it is

cosϕ =
xy

|x| · |y| = 1 − 1
2

d2

(
x

|x| ,
y

|y|
)

.

Although the scalar product is faster to compute, it enforces spherical clusters.
Therefore we rely on the Mahalanobis distance in our approach.

3.2 Index Term Selection

To reduce the number of words in the vector description we applied a simple
method for keyword selection by extracting keywords based on their entropy. In
the approach discussed in [16], for each word k in the vocabulary the entropy as
defined by [20] was computed:

Wk = 1 +
1

log2 n

n∑
j=1

pjk log2 pjk with pjk =
tfjk∑n
l=1 tf lk

, (4)

where tfjk is the frequency of word k in document j, and n is the number of
documents in the collection. Here the entropy gives a measure how well a word is
suited to separate documents by keyword search. For instance, words that occur
in many documents will have low entropy. The entropy can be seen as a measure
of the importance of a word in the given domain context. As index words a
number of words that have a high entropy relative to their overall frequency
have been chosen, i.e. of words occurring equally often those with the higher
entropy can be preferred. Empirically this procedure has been found to yield a
set of relevant words that are suited to serve as index terms [16].

However, in order to obtain a fixed number of index terms that appropriately
cover the documents, we applied a greedy strategy: from the first document in
the collection select the term with the highest relative entropy as an index term.
Then mark this document and all other documents containing this term. From
the first of the remaining unmarked documents select again the term with the



Label Dataset Category Associated Theme

A Commercial Banks Banking & Finance
B Building Societies Banking & Finance
C Insurance Agencies Banking & Finance
D Java Programming Lang.
E C / C++ Programming Lang.
F Visual Basic Programming Lang.
G Astronomy Science
H Biology Science
I Soccer Sport
J Motor Racing Sport
K Sport Sport

Table 1. Categories and Themes of the used benchmark data set of web pages.

highest relative entropy as an index term. Then mark again this document and
all other documents containing this term. Repeat this process until all docu-
ments are marked, then unmark them all and start again. The process can be
terminated when the desired number of index terms have been selected.

4 Experiments

For our experimental studies we chose the collection of web page documents used
in [26].1 The data set consists of 11,000 web pages classified into 11 equally-
sized categories each containing 1,000 web documents. To each category one of
four distinct themes, namely Banking and Finance, Programming Languages,
Science, and Sport was assigned as shown in Table 1.

In the following we present results we obtained using the preprocessing strate-
gies described above. After stemming and stop word filtering we obtained 163,860
words. This set was further reduced by removing terms that are shorter than
4 characters and that occur less then 15 times or more than 11, 000/12 ≈ 917
times in the whole collection. In this way we made sure that no words that per-
fectly separate one class from another are used in the describing vectors. From
the remaining 10626 words we selected 400 words by applying the greedy index-
term selection approach described in Section 3.2. For our clustering experiments
we selected finally subsets of the 50, 100, 150, ..., 350, 400 most frequent words
in the subset to be clustered. Based on these words we determined vector space
descriptions for each document (see Section 3.1, Equation (2)) that we used in
our clustering experiments. All vectors were normalized to unit length (after the
subset selection).

To assess the clustering performance using term re-weighting techniques, we
computed the performance on the same data sets used in our previous experi-
1 This collection is available for download at

http://www.pedal.rdg.ac.uk/banksearchdataset



ments [5], i.e., we clustered the union of the dissimilar data sets A and I, and the
semantically more similar data sets B and C. In a third experiment we used all
classes and tried to find clusters describing the four main themes, i.e., banking,
programming languages, science, and sport.

For our experiments we used c-means, fuzzy clustering and learning vector
quantization methods. The learning vector quantization algorithm updated the
cluster parameters once for every 100 documents. 2

A detailed discussion of the performance of these methods with and with-
out cluster centers normalized to unit length, with and without variances (i.e.,
spherical clusters and axes-parallel ellipsoids—diagonal covariance matrices—of
equal size), and with the inverse squared distance or the Gaussian function for
the activation / membership degrees can be found in [5]. Here, however, we focus
on term re-weighting aspects.

4.1 Clustering using Variances

Our prior experiments in document clustering [5] indicated that the use of
variances—which can be seen as a method for cluster specific keyword weighting
—can sometimes improve the clustering performance and stability. However, in
our first studies we restricted ourselves to analyze the performance using mean
performances and variances. As a consequence, the causes for the differences in
the performance remained somewhat unclear. Therefore we repeated several of
the experiments and present in Figures 2 to 3 the results obtained with cluster
centers normalized to length 1 with and without variances for hard c-means,
fuzzy c-means and (fuzzified) learning vector quantization. All results represent
the values of ten runs, which differed in the initial cluster positions and the
order in which documents were processed. For the experiments with variances
we restricted the maximum ratio of the variances to 1.22 : 1 = 1.44 : 1, which
seemed to yield the best results over all three clustering experiments.

The dotted lines show the default accuracy (obtained if all documents are
assigned to the majority class). The grey horizontal lines in each block, which are
also marked by diamonds to make them more easily visible, show the average
classification accuracy (computed from a confusion matrix by permuting the
columns so that the minimum number of errors results) in percent (left axis),
while the black crosses indicate the performance single experiments. The grey
dots and lines close to the bottom show the average execution times in seconds
(right axis), while the smaller grey dots and lines at the top of each diagram
show the performance of a Näıve Bayes Classifier trained with the corresponding
subset of words. The Näıve Bayes Classifier can be considered as an upper limit,
while the default accuracy is a lower baseline.

For all data sets the clustering process for fuzzy c-means and (fuzzified)
learning vector quantization is much more stable than c-means. However, all
2 All experiments were carried out with a program written in C and compiled with

gcc 3.3.3 on a Pentium 4C 2.6GHz system with 1GB of main memory running
S.u.S.E. Linux 9.1. The program and its sources can be downloaded free of charge
at http://fuzzy.cs.uni-magdeburg.de/˜borgelt/cluster.html.



methods seem to switch between two strong local minima for the semantically
similar data sets B and C.

The introduction of variances increases the performance of fuzzy c-means
in all cases. However, the performance for c-means is only improved for the
two class problem with data sets A and I and the four class problem, while
the performance of (fuzzified) learning vector quantization is improved for the
semantically more similar data sets B and C and the four class problem.

4.2 Keyword Weighting by Information Gain

Information gain (also known as mutual (Shannon) information or (Shannon)
cross entropy), which is frequently used in decision tree learning, measures the
average or expected entropy reduction resulting from finding out the value of a
specific attribute. In text categorization information gain can be used to measure
how well a term can be used to categorize a document, i.e., it measures the
entropy reduction based on this specific term.

The information gain of a term tk for a given set of r classes ci is defined as:

Igain(tk) = −
r∑

i=1

P (ci) log2 P (ci) (5)

+P (tk)
r∑

i=1

P (ci|tk) log2 P (ci|tk)

+P (tk)
r∑

i=1

P (ci|tk) log2 P (ci|tk)

The information gain values are then either used to re-weight the terms of each
document or to initialize the cluster-specific variances (see below).

4.3 Re-Scaling the Document Space

In order to study the effects of keyword weighting, we computed the “impor-
tance” of each keyword for the classification of a document based on the infor-
mation gain (see above). These “importance” values are then used to re-weight
the terms in each document by computing

x∗
jk = xjk · (Igain(tk) + o) (6)

and then re-normalizing the document vectors to unit length, resulting in a re-
scaling of the document space with respect to the importance of a keyword.

The offset o in the above formula was computed as

o =
maxtk∈T Igain(tk) − r · mintk∈T Igain(tk)

r − 1
,

where r is a user-specified maximum ratio of the scaling factors for different
terms and T is the current set of index terms. From several experiments we



conducted it seems that values of r must be small (close to 1) in order not to
spoil the performance completely. Here we chose r = 1.5.

The results of these experiments are shown in the top rows of Figures 4 to 6.
As can be seen, no gains result in any of the cases. The accuracy rather deterio-
rates slightly, an effect that gets stronger with higher values of r as we observed
in other experiments. Hence we can conclude that re-scaling the document space
in the way described does not lead to an improved performance.

4.4 Cluster Specific Keyword Weights

Instead of using the information gain to re-scale the document space one may
also add shape parameters (i.e., (co)variances) to the cluster prototypes, which
are initialized according to the “importance” of a term. This has the advantage
that term weights can be cluster specific, since each cluster may use a different
set of variances.

To evaluate this approach, we proceeded as follows: in a first step we clustered
the documents with randomly chosen starting points and without variances.
Afterwards, the best matching classes are automatically assigned by evaluating
the confusion matrix of the classification result obtained with the learned clusters
and the correct document classes.

Then the cluster prototypes were enhanced with cluster-specific variances
computed as the product of the term frequency in the class and the information
gain of the term w.r.t. a separation of the class assigned to the cluster from all
other classes. In order to keep the cluster shapes close to spherical, we restricted
the maximum ratio of the variances to 1.22 : 1 = 1.44 : 1 (cf. Section 4.1. Other
values for this maximum ratio (higher as well as lower) led to worse results.
Especially larger values considerably worsened the performance.

Finally, in a second clustering run, these enhanced cluster prototypes were op-
timized without changing the variances (only the cluster centers were adapted).

The results of these experiments are shown in the bottom rows of Figures 4
to 6. As can be seen, the cluster-specific variances stabilize the results for the
four cluster problem and—though only very slightly—improve the performance
for the two cluster problems. Thus we can conclude that cluster-specific variance
may provide some means for term weighting. However, the approach seems to be
very sensitive to the parameter settings. Furthermore, the computational costs
are very high.

4.5 Choosing Initial Cluster Centers

As we mentioned in Section 4.1 all clustering methods seem to switch between
local minima depending on the initial cluster centers choosen—which is in fact a
well known clustering problem, especially for the less robust c-means algorithm,
which is prone to get stuck in local optima easily. Therefore we studied a quite
simple initialization approach: for each class we sorted the index terms w.r.t. the
product of the term frequency in the class and the information gain of the term
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Fig. 1. Classification accuracy over number of keywords on commercial banks versus
soccer (top row: standard, bottom row: with adaptable variances).
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Fig. 2. Classification accuracy on building companies versus insurance agencies (top
row: standard, bottom row: with adaptable variances).
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Fig. 3. Classification accuracy on major themes (four clusters; top row: standard, bot-
tom row: with adaptable variances).
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Fig. 4. Classification accuracy on commercial banks versus soccer (top row: document
space re-scaled, bottom row: fixed cluster specific variances).
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Fig. 5. Classification accuracy on building companies versus insurance agencies (top
row: document space re-scaled, bottom row: fixed cluster specific variances).
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Fig. 6. Classification accuracy on major themes (top row: document space re-scaled,
bottom row: fixed cluster specific variances).



w.r.t. a separation of the class from all other classes (cf. Section 4.4). Then we
selected the first k words in these lists and initialized the cluster center using the
same value for each selected word and zero for all others, finally normalizing the
vector to unit length. Even for fairly small values of k (i.e. few selected words),
this initialization results in a very stable clustering performance. Thus—similar
to the idea of weight initialization in order to bias the clustering process—known
describing keywords can be used in order to initialize the clustering process.
In this way unwanted local minima may be avoided and the results may be
stabilized.

5 Conclusions

Our experiments show that including prior information about the “importance”
or “goodness” of a keyword for a desired class or cluster can, in principle, improve
the clustering performance. However, it is fairly difficult to find a good way of
scaling the documents or enhancing the cluster prototypes in an appropriate way.
Scaling the document space does not yield any improvement at all. On the other
hand, cluster-specific variances derived from the “importance” of index terms can
slightly improve and stabilize the clustering performance. However, the gains are
marginal and the approaches seem to be fairly sensitive to parameter settings.
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