Unmasking Pseudonymous Authors

Koppel, Schler Bonchek-Dokow

Sebastian Wilhelm

- We have: examples of the writing of a single author
- Task: determine if given texts were or were not written by this author

- We do not lack negative examples
 - Just because text is more similar to A does not mean it was authored by A rather than by B
- Chunking the text so we have multiple examples (if text is long)
 - Given two example sets -> determine if sets were generated in a single generation process

- Authorship Verification: Naive Approaches
 - Lining up impostors:
 - Model A vs. Not-A
 - X -> chuked -> A or not-A
 - Not-A => not author (true)
 - A => author (not true)

- Authorship Verification: Naive Approaches
 - One class learning:
 - Circumscribes all positive examples of A
 - Conclude: X is authored A if a sufficient number of chuks of X lie inside boundry

- Authorship Verification: Naive Approaches
 - Comparing A directly to X:
 - Learn a model for A vs. X
 - Assess the extent of difference between A and X using cross-validation
 - Easy to distinguish => high accuracy in cross-validation => A did not write X

- New Approach: Unmasking
 - Idea: small number of features can distinguish between texts (e.g. he vs. she)

 Solution: determining not only if A is distinguishable from X but also <u>how</u> great is the difference between A and X

- New Approach: Unmasking
 - => unmasking:
 - Iteratively remove those features that are most useful for distinguishing between A and X
 - Gauge the speed with which cross-validation accuracy degrades as more features are removed
 - A and X by same author => differences between them will be reflected in only a small number of features

- Unmasking Applied:
 - n words with highest average frequency in Ax and X as initial feature
 - 1. Determine the accuracy results of a ten-fold cross-validation experiment for Ax against X
 - 2. Eliminate the k most strongly weighted positive and negative features
 - 3. Go to step 1

=> Degeneration curves for each pair <Ax,X>

Figure 2. Unmasking *An Ideal Husband* against each of the ten authors (n=250, k=3). The curve below all the authors is that of Oscar Wilde, the actual author. (Several curves are indistinguishable.)

- Meta-learning: Identifying Same-Author Curves
 - Quantify the difference between same-author and different-author curves
 - Each curve as a numerical vector in terms of its essential features:
 - Accuracy after i elimination rounds
 - Accuracy difference between round i and i+1
 - Accuracy difference between round i and i+2
 - Highest accuracy drop in one iteration
 - Highest accuracy drop in two iterations

- Meta-learning:
 - Sort vectors in two subsets:
 - Ax, X = same author
 - Ax, X = different author
 - For all same-author curves:
 - Accuracy after 6 elimination rounds is lower than 89%
 - AND the second highest accuracy drop in two iterations is greater than 16%

Features (n)	Features eliminated (k)	Iterations (m)	Correctly classified same-author (out of 20)	Correctly classified <i>different-author</i> (out of 189)	F1 (macro average)
250	3	5	16	183	0.868
		10	19	181	0.892
		20	20	180	0.896
	6	5	20	182	0.916
		10	20	180	0.896
		20	20	181	0.906
	10	5	20	180	0.896
		10	20	179	0.886
500	3	5	14	189	0.904
		10	12	186	0.828
		20	16	180	0.838
	6	5	13	184	0.826
		10	18	180	0.868
		20	19	179	0.873
	10	5	16	181	0.848
		10	18	180	0.868
		20	20	177	0.868
1000	3	5	11	189	0.843
		10	11	188	0.831
		20	12	183	0.797
	6	5	12	188	0.852
		10	14	184	0.844
		20	17	181	0.863
	10	5	15	184	0.862
		10	16	182	0.857
		20	16	177	0.812

Table 2 Accuracy results on the 21 book experiment for a variety of parameter setting

- Extension: Using Negative Examples
 - Learn model of A vs. Not A
 - Test each example of X (assigned to A or not-A?)
 - If many are assigned not A => X is not the author
 - BUT not true for the opposite conclusion

- Extension: Using Negative Examples
 - For each author A choose impostors A1...An (as not-A class)
 - Learn A vs. Not A
 - Learn models for each Ai vs. Not Ai
 - Test all examples in X against each other of these models
 - A(X) = percentage of examples of X classed as A
 - Ai(X)= percentage of examples of X classed as Ai
 - A(X) < Ai(X) for all i => A is not by author of X
 - Otherwise A <u>may</u> be by author of X

• Conclued that A is t the author of X if both methods indicate it

```
Given: anonymous book X, works of suspect author A,
       (optionally) impostors {A1, ..., An}
Step 1 - Impostors method(optional)
if impostors {A1, ..., An} are given then
{
    Build model M for classifying A vs. all impostors
    Test each chunk of X with built model M
    foreach impostor Ai
    {
         Build model Mi for classifying Ai vs. {A ∪ all other
                                                    impostors}
         Test each chunk of X with built model Mi
     If for some Ai number of chunks assigned to Ai > number of
                                           chunks assigned to A
     then
            return different-author
-}
Step 2 - Unmasking
Build degradation curve <A, X>
Represent degradation curve as feature vector (see text)
Test degradation curve vector (see text)
    if test result positive
        return same-author
    else
        return different-author
Method Build Degradation Curve:
Use 10 fold cross validation for A against X
foreach fold
      Do m iterations
            Build a model for A against X
            Evaluate accuracy results
            Add accuracy number to degradation curve <A,X>
            Remove k top contributing features (in each
                                    direction) from data
```

- Alternative: Measure of Depth of Difference
 - Check number of features with significant information gain between authors
 - Not as good as unmasking

Figure 6. Information-gain curves for *An Ideal Husband* versus ten authors. The dark line is Oscar Wilde, the actual author.

- Conclusion
 - High accuracy
 - Even better with additional negative data
 - Language, period and genre independent