A repetition based measure for verification of text collections and for text categorization Dmitry V. Khmelev and William J. Teahan

Lucas Rettenmeier

September 25, 2015

Repetition measure R

- Main goal: Verification of text collections.
- Can be used for Multi-class categorization.
- Very simplistic approach to authorship attribution.
- Works in every language, without any preprocessing.

Theory

Notation

$$R(T|T_1,...T_m) \in [0,1]$$

• Each document is a string $T_i[1,...|T_i|]$, thereby works like a mapping:

$$T_i: \{1, 2, ... | T_i| \} \rightarrow \{\mathtt{ASCII}\}$$

Length of the document:

$$|T| =: I$$

Suffix of a string T:

• Lenght of the longest prefix of S, repeated in one of the documents $T_1, ... T_m$:

$$Q(S|T_1, \dots T_m)$$

3 / 16

Definition

• Squared R - measure:

$$R^{2}(T|T_{1},...T_{m}) = \frac{2}{I(I+1)} \sum_{i=1}^{I} Q(T[i,...I]|T_{1},...T_{m})$$

Properties:

- Well-behaved in many situations.
- Possible values:

$$R \ge 0$$
: $R^2("abc"|"def") = \frac{2}{I(I+1)} \times 0 = 0$
 $R \le 1$: $R^2(T|T) = \frac{2}{I(I+1)} \sum_{i=1}^{I} (I-i) + 1 = 1$

Example

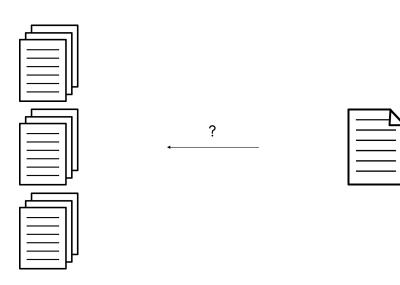
R-measure of:

in respect to the collection:

$$T_1 =$$
 "the_cat_on_a_mat" and $T_2 =$ "the_cat_sat"

Result

$$R^{2}(T|T_{1}, T_{2}) = \frac{2}{10 \times (10+1)} [(7+5+4+3)) + (5+4+3+2+1)] \approx 0.727272$$


$$R(T|T_1, T_2) = \sqrt{R^2(T|T_1, T_2)} \approx 0.852802$$

Demo

Locating duplicates/plagiarism

- R-measure itself delivers no information about which document is similar to our test document.
- Heuristic pruning algorithm \Rightarrow list of greatest contributing documents to R.

Multi-Class categorization

Authorship attribution

- Set of training documents $\{T_i\}$ for different authors.
- Document *U* with unknown authorship.

Real author: $r = \arg \max_i R(U|T_i)$

Identify foreign and/or non-typical documents

- Training documents for different languages ⇒ very fast language identification.
- Very small R-values (≤ 0.01) indicate special properties of the document (almost only names, numbers,...).

Method	R < 0.25	R < 0.5	R < 0.75	R < 1.00	$R \le 1.0$
R-measure	82.1	86.4	87.1	87.8	89.0
Multi-SVM	80.6	83.4	83.5	84.6	85.0
Bzip2	56.9	55.2	45.9	51.9	48.2
Gzip	55.7	53.5	53.9	50.1	59.4
Markov Chains, order 1	62.3	64.6	63.2	64.3	66.1
Markov Chains, order 2	60.9	64.4	61.8	64.7	64.5
Markov Chains, order 3	48.6	60.3	59.3	61.7	63.3
RAR	84.3	$\bf 86.9$	87.3	88.5	89.4
PPMD, order 2	77.8	79.1	79.4	80.5	81.3
PPMD, order 3	80.6	82.3	84.0	85.0	86.4
PPMD, order 4	82.5	85.4	86.0	87.7	88.4
PPMD, order 5	82.2	86.1	86.3	88.8	89.2

Table: Results of the authorship attribution

Reproducing the Results

- Programm written in C++.
- Corpus (C50) consists of newspaper articles of 50 different authors (each about 5000 characters long).
- Used 10 authors, 50 training + 50 test articles per author.
- High computing time: $\Theta(I, a, n) = I^2 \times a^2 \times n^2$.

Own Results

RL/AT	ΑP	BH	EF	JM	JB	LZ	NL	SD	TF	WK
AP	47	0	0	1	0	0	0	2	0	0
BH	0	43	0	0	0	0	0	7	0	0
EF	0	0	34	2	4	0	0	6	4	0
JM	0	0	0	42	1	0	0	0	2	5
JB	0	0	0	0	49	0	0	1	0	0
LZ	0	0	0	0	0	43	4	3	0	0
NL	0	0	0	1	0	0	50	0	0	0
SD	0	0	0	1	0	0	0	49	0	0
TF	0	0	0	0	0	0	0	1	49	0
WK	0	0	0	14	0	0	0	2	0	34

Table: Results of the multi-class categorization

⇒ **87,8** % correctly identified documents

Improved Results

RL/AT	ΑP	BH	EF	JM	JB	LZ	NL	SD	TF	WK
AP	49	0	0	0	0	0	0	0	0	1
BH	0	48	1	0	0	0	0	0	0	1
EF	0	0	40	0	4	0	0	0	6	0
JM	0	0	0	38	0	0	0	0	0	12
JB	0	0	0	0	48	0	0	0	1	1
LZ	0	0	0	0	0	45	4	1	0	0
NL	0	0	0	0	0	0	50	0	0	0
SD	0	0	1	1	0	1	0	43	0	4
TF	0	0	1	0	1	0	0	0	48	0
WK	0	0	0	8	0	0	0	0	0	42

Table: Improved Results of the multi-class categorization

 \Rightarrow 90,2 % correctly identified documents

Reproducibility

- Simple approach \Rightarrow No real problems occured.
- Very detailed description.
- References to other papers where quite clear.

Conclusion

Positive

- Precision of over 90 % with a very simplistic approach.
- Very effective in finding duplicates and plagiates in large text collections.

Negative

- Only tested with large training sets (about 100.000 characters).
- Newspaper articles may not be representative.

What to do next?