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Agenda

• the approach proposed by Koppel et al. 

• experiment, main algorithm and used data set

• my re-implementation of the experiment

• code samples

• encountered problems while implementing

• Results and conclusion
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Introduction
Simple problem

Candidate authors small, closed set

„Known text“ ✔ available

Actual author in 
candidate set

✔ yes

Koppel et al.

thousands

✘ might be very limited

? might be not
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Introduction
Koppel et al.

thousands

✘ might be very limited

? might be not

Goals:

• high attribution precision

• acceptable amount of recall

• mesure effect of key factors:

1. number of candidates

2. size of known-text

3. size of anonymous text
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Methods of authorship attribution

?

✔

✔

✔

✔

2 main paradigms:

• Similarity-based paradigm

• Machine-learning paradigm
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Methods of authorship attribution

?

✔

✔

✔

✔

• Similarity-based paradigm

 more appropriate for many 
candidate authors

 mesure distance between
anonymous and known text

 Attribution to most similar one
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Corpus and data usage

• 10,000 blogs (blogger.com, August 2004)

• balanced for gender

• mainly written in English

• Usage:

• 2,000 words of known text of each blog

• Snippet of 500 words

• Task: By which of the candidate authors (if any) 
was the snippet written?

A recollection of the corpus can
be found on: 
http://u.cs.biu.ac.il/~koppel/ 
BlogCorpus.htm
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Preparing the data:

Space-free character 4-grams

Hellello worlorldrld!

• String of characters…

• of length 4, includes no spaces

• of ≤ 4 characters, surrounded by
spaces

• 250,000 unique, overlapping SFC4G‘s 

• measurable in any language, no background knowledge needed
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Preparing the data:

Generating feature sets

Hell
ello
worl
orld
rld!
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“Hello“ “world“ “Hello world!“
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• Known text of snippet’s author
=

text most similar to the snippet

• Also if feature set is varied 

The main algorithm

Assumptions

?

✔ ✔

✔ ✔
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The main algorithm
Given:

• Snippet of length L1

• Known-texts of
length L2 for each of
C candidates

Pseudocode

repeat (k1 times) {
randomly choose fraction k2 of feature set
find top mach using cosine similarity

}
for each (candidate author A) {

score(A) = proportion of times A is top match
} 
Output:

if ( max score (A) > σ* ) { arg maxA score (A) }
else { Don‘t know! }
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The main algorithm
Pseudocode

repeat (k1 times) {
randomly choose fraction k2 of feature set
find top mach using cosine similarity

}
for each (candidate author A) {

score(A) = proportion of times A is top match
} 
Output:

if ( max score (A) > σ* ) { arg maxA score (A) }
else { Don‘t know! }

Parameters:

k1: number of different
feature sets used

k2: fraction of possible
features of the set

A: a candidate author

σ*: threshold to be
reached by a
candidate autor
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Steps of reproduction / implementation

• pre-process corpus (✔) original corpus not available!

• read in data from files ✔

• extract plain text (✔) some improvements pending…

• generate space-free character 4-grams ✔

• generate feature sets ! current algorithm too slow!

• run main algorithm ToDo
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1) Pre-process corpus (✔)
Original corpus Corpus from Prof. Koppel‘s website

collected in 2004 recollected later

10,000 blogs 19,320 blogs

all blogs mainly written in English also contains blogs in Chinese, etc.

• Eliminated blogs with not enough text, ignored non-English characters

• included all space-free 4-grams as well as all words of length < 4

• only used k most frequent features in corpus
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2) Read data from files  ✔
Java code
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3) Extract plain text (✔)
Java code Example: XML file from blog corpus
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4) Generate 4-grams  ✔
Java code
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4) Generate 4-grams  ✔
File that contains all space-free character 4-grams 4-gram file of one single blog

15



Authorship attribution in the wild 
Approach Experiment Implementation Results

5) Generate feature sets  !

load all space-free character 4-grams from file into list L1
load 4-grams of last 500 words from random blog (snippet) to list L2
generate feature set for snippet {

declare array A1 of the length of L1 and fill with 0’s
for each 4-gram in L1 {

for each 4-gram in L2 {
if (4-grams from arrays of both loops match) {
increase value of A1 at the position of iterator of outer loop by 1

}      }       }       }
save A1 to file
repeat steps feature set generation similarly for each of the 10,000 known texts

Pseudo code
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5) Generate feature sets  !

load all space-free character 4-grams from file into list L1
load 4-grams of last 500 words from random blog (snippet) to list L2
generate feature set for snippet {

declare array A1 of the length of L1 and fill with 0’s
for each 4-gram in L1 {

for each 4-gram in L2 {
if (4-grams from arrays of both loops match) {
increase value of A1 at the position of iterator of outer loop by 1

}      }       }       }
save A1 to file
repeat steps feature set generation similarly for each of the 10,000 known texts

Pseudo code

10,00o   (number of blogs)

* 250,000   (all possible 4-grams)

* 100,000   (4-grams per blog)

= 250,000,000,000,000
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Software architecture
Data Access

DAO

- br : BufferedReader
- pw : PrintWriter

+ countBlogs() : int
+ getFileNames() : File[]
+ getAllAuthorIds() : int[]
+ generate4GramLists()

: ArrayList <String>
+ get4GramsOfFile

(String, int, boolean)
: ArrayList <String>

…

Programm logic

Application

…

+ configExperimet() : void
+ configPaths() : void
+ runExperiment() : void
+ getRandomSnippet (int) : void

…

KnownText

Snippet

Text

FeatureSet

Person

1..1
represents

1..1

is Author
of

User interface

<interface>
IUI

UI_Console

+ configParameters() : void
+ showError(String) : void
+ showMessage(String) : void
+ showMainMenu() : void
- askForConfig() : void

…
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Parameters
k1: number of different feature sets used

k2: fraction of possible features per iteration

C: number of candidate authors

σ*: threshold to be reached by a candidate autor

18



Authorship attribution in the wild 
Approach Experiment Implementation Results

k2: fraction of features per iteration

k1 = 100 (Iterations)

σ* = 90% (Threshold) 

C = 10,000 (Candidate authors) 

L1 = 500 (Snippet length)

L2 =   2,000 (Known-text length)

k2

19



Authorship attribution in the wild 
Approach Experiment Implementation Results

C: number of candidate authors

k1 = 100 (Iterations)

k2 = 40% (Features / iteration)

σ* = 90% (Threshold) 

L1 = 500 (Snippet length)

L2 =   2,000 (Known-text length)

C
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L1: Snippet length

k1 = 100 (Iterations)

k2 = 40% (Features / iteration)

σ* = 90% (Threshold) 

C = 10,000 (Candidate authors) 

L2 =   2,000 (Known-text length)

L1
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L2: Known-text length

k1 = 100 (Iterations)

k2 = 40% (Features / iteration)

σ* = 90% (Threshold) 

C = 10,000 (Candidate authors) 

L1 = 500 (Snippet length)

L2
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Abstract: Extention of the algorithm
• Usefull for forensic applications:

Estimated probability that assigned author is actual one

• Precision and coverage can be predicted using regression

• Probability p:
• Probability that author is in candidate set

• Value [0 - 1.0] provided by user

• E: Probability that some author is assigned when the actual one is not 
in the candidate set

•
𝒑∗𝑯∗𝑷

𝒑∗𝑯+ 𝟏−𝒑 ∗𝑬
= Probability assigned author is the actual one
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Results

Conclusions (Paper)
• Simple similarity-based method can solve even difficult problems

• many candidate authors

• limited length of known-text

• actual author might not be in candidate set

• Passable results even for snippets of only 100 words

• Method not usefull for small open candidate sets and limited 
anonymous text
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Results

Conclusions (Reproducability)
✔Main algorithm well described

✔Corpus the experiment was performed with available on the
author‘s website…

!  …but a recollection and not the original one – not similar to the
original one in some points

!  No description how the vectors are generated form the 4-grams
or how they are handled effectively within the programm

!  Plugin Apache Lucene used for indexing not mentioned in paper
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