
Moshe Koppel - Jonathan Schler - Shlomo Argamon

Authorship attribution
in the wild

SUMMER ACA DE MY NIZ Z A 20 1 5 – WO R KG R O UP 2: WHO WR OT E T HE WE B ?

FABIAN MÜLLER

Agenda

• the approach proposed by Koppel et al.

• experiment, main algorithm and used data set

• my re-implementation of the experiment

• code samples

• encountered problems while implementing

• Results and conclusion

Approach Experiment Implementation
Authorship attribution in the wild

Results

1

Authorship attribution in the wild
Approach Experiment Implementation Results

Introduction
Simple problem

Candidate authors small, closed set

„Known text“ ✔ available

Actual author in
candidate set

✔ yes

Koppel et al.

thousands

✘ might be very limited

? might be not

2

Authorship attribution in the wild
Approach Experiment Implementation Results

Introduction
Koppel et al.

thousands

✘ might be very limited

? might be not

Goals:

• high attribution precision

• acceptable amount of recall

• mesure effect of key factors:

1. number of candidates

2. size of known-text

3. size of anonymous text

A
u

th
o

rs
K

n
o

w
n

-t
e

xt
A

u
th

o
r

in
 s

et

2

Authorship attribution in the wild
Approach Experiment Implementation Results

Methods of authorship attribution

?

✔

✔

✔

✔

2 main paradigms:

• Similarity-based paradigm

• Machine-learning paradigm

3

Authorship attribution in the wild
Approach Experiment Implementation Results

Methods of authorship attribution

?

✔

✔

✔

✔

• Similarity-based paradigm

 more appropriate for many
candidate authors

 mesure distance between
anonymous and known text

 Attribution to most similar one

3

Authorship attribution in the wild
Approach Experiment Implementation Results

Corpus and data usage

• 10,000 blogs (blogger.com, August 2004)

• balanced for gender

• mainly written in English

• Usage:

• 2,000 words of known text of each blog

• Snippet of 500 words

• Task: By which of the candidate authors (if any)
was the snippet written?

A recollection of the corpus can
be found on:
http://u.cs.biu.ac.il/~koppel/
BlogCorpus.htm

4

Authorship attribution in the wild
Approach Experiment Implementation Results

Preparing the data:

Space-free character 4-grams

Hellello worlorldrld!

• String of characters…

• of length 4, includes no spaces

• of ≤ 4 characters, surrounded by
spaces

• 250,000 unique, overlapping SFC4G‘s

• measurable in any language, no background knowledge needed

5

Authorship attribution in the wild
Approach Experiment Implementation Results

Authorship attribution in the wild
Approach Experiment Implementation Results

Preparing the data:

Generating feature sets

Hell
ello
worl
orld
rld!

1
1
0
0
0

0
0
1
1
0

1
1
1
1
1

“Hello“ “world“ “Hello world!“

6

Authorship attribution in the wild
Approach Experiment Implementation Results

• Known text of snippet’s author
=

text most similar to the snippet

• Also if feature set is varied

The main algorithm

Assumptions

?

✔ ✔

✔ ✔

7

Authorship attribution in the wild
Approach Experiment Implementation Results

The main algorithm
Given:

• Snippet of length L1

• Known-texts of
length L2 for each of
C candidates

Pseudocode

repeat (k1 times) {
randomly choose fraction k2 of feature set
find top mach using cosine similarity

}
for each (candidate author A) {

score(A) = proportion of times A is top match
}
Output:

if (max score (A) > σ*) { arg maxA score (A) }
else { Don‘t know! }

8

Authorship attribution in the wild
Approach Experiment Implementation Results

The main algorithm
Pseudocode

repeat (k1 times) {
randomly choose fraction k2 of feature set
find top mach using cosine similarity

}
for each (candidate author A) {

score(A) = proportion of times A is top match
}
Output:

if (max score (A) > σ*) { arg maxA score (A) }
else { Don‘t know! }

Parameters:

k1: number of different
feature sets used

k2: fraction of possible
features of the set

A: a candidate author

σ*: threshold to be
reached by a
candidate autor

9

Authorship attribution in the wild
Approach Experiment Implementation Results

Steps of reproduction / implementation

• pre-process corpus (✔) original corpus not available!

• read in data from files ✔

• extract plain text (✔) some improvements pending…

• generate space-free character 4-grams ✔

• generate feature sets ! current algorithm too slow!

• run main algorithm ToDo

10

Authorship attribution in the wild
Approach Experiment Implementation Results

1) Pre-process corpus (✔)
Original corpus Corpus from Prof. Koppel‘s website

collected in 2004 recollected later

10,000 blogs 19,320 blogs

all blogs mainly written in English also contains blogs in Chinese, etc.

• Eliminated blogs with not enough text, ignored non-English characters

• included all space-free 4-grams as well as all words of length < 4

• only used k most frequent features in corpus

11

Authorship attribution in the wild
Approach Experiment Implementation Results

2) Read data from files ✔
Java code

12

Authorship attribution in the wild
Approach Experiment Implementation Results

3) Extract plain text (✔)
Java code Example: XML file from blog corpus

13

Authorship attribution in the wild
Approach Experiment Implementation Results

4) Generate 4-grams ✔
Java code

14

Authorship attribution in the wild
Approach Experiment Implementation Results

4) Generate 4-grams ✔
File that contains all space-free character 4-grams 4-gram file of one single blog

15

Authorship attribution in the wild
Approach Experiment Implementation Results

5) Generate feature sets !

load all space-free character 4-grams from file into list L1
load 4-grams of last 500 words from random blog (snippet) to list L2
generate feature set for snippet {

declare array A1 of the length of L1 and fill with 0’s
for each 4-gram in L1 {

for each 4-gram in L2 {
if (4-grams from arrays of both loops match) {
increase value of A1 at the position of iterator of outer loop by 1

} } } }
save A1 to file
repeat steps feature set generation similarly for each of the 10,000 known texts

Pseudo code

16

Authorship attribution in the wild
Approach Experiment Implementation Results

5) Generate feature sets !

load all space-free character 4-grams from file into list L1
load 4-grams of last 500 words from random blog (snippet) to list L2
generate feature set for snippet {

declare array A1 of the length of L1 and fill with 0’s
for each 4-gram in L1 {

for each 4-gram in L2 {
if (4-grams from arrays of both loops match) {
increase value of A1 at the position of iterator of outer loop by 1

} } } }
save A1 to file
repeat steps feature set generation similarly for each of the 10,000 known texts

Pseudo code

10,00o (number of blogs)

* 250,000 (all possible 4-grams)

* 100,000 (4-grams per blog)

= 250,000,000,000,000

16

Authorship attribution in the wild
Approach Experiment Implementation Results

Software architecture
Data Access

DAO

- br : BufferedReader
- pw : PrintWriter

+ countBlogs() : int
+ getFileNames() : File[]
+ getAllAuthorIds() : int[]
+ generate4GramLists()

: ArrayList <String>
+ get4GramsOfFile

(String, int, boolean)
: ArrayList <String>

…

Programm logic

Application

…

+ configExperimet() : void
+ configPaths() : void
+ runExperiment() : void
+ getRandomSnippet (int) : void

…

KnownText

Snippet

Text

FeatureSet

Person

1..1
represents

1..1

is Author
of

User interface

<interface>
IUI

UI_Console

+ configParameters() : void
+ showError(String) : void
+ showMessage(String) : void
+ showMainMenu() : void
- askForConfig() : void

…

17

Authorship attribution in the wild
Approach Experiment Implementation Results

Parameters
k1: number of different feature sets used

k2: fraction of possible features per iteration

C: number of candidate authors

σ*: threshold to be reached by a candidate autor

18

Authorship attribution in the wild
Approach Experiment Implementation Results

k2: fraction of features per iteration

k1 = 100 (Iterations)

σ* = 90% (Threshold)

C = 10,000 (Candidate authors)

L1 = 500 (Snippet length)

L2 = 2,000 (Known-text length)

k2

19

Authorship attribution in the wild
Approach Experiment Implementation Results

C: number of candidate authors

k1 = 100 (Iterations)

k2 = 40% (Features / iteration)

σ* = 90% (Threshold)

L1 = 500 (Snippet length)

L2 = 2,000 (Known-text length)

C

20

Authorship attribution in the wild
Approach Experiment Implementation Results

L1: Snippet length

k1 = 100 (Iterations)

k2 = 40% (Features / iteration)

σ* = 90% (Threshold)

C = 10,000 (Candidate authors)

L2 = 2,000 (Known-text length)

L1

21

Authorship attribution in the wild
Approach Experiment Implementation Results

L2: Known-text length

k1 = 100 (Iterations)

k2 = 40% (Features / iteration)

σ* = 90% (Threshold)

C = 10,000 (Candidate authors)

L1 = 500 (Snippet length)

L2

22

Authorship attribution in the wild
Approach Experiment Implementation Results

Abstract: Extention of the algorithm
• Usefull for forensic applications:

Estimated probability that assigned author is actual one

• Precision and coverage can be predicted using regression

• Probability p:
• Probability that author is in candidate set

• Value [0 - 1.0] provided by user

• E: Probability that some author is assigned when the actual one is not
in the candidate set

•
𝒑∗𝑯∗𝑷

𝒑∗𝑯+ 𝟏−𝒑 ∗𝑬
= Probability assigned author is the actual one

23

Approach Experiment Implementation
Authorship attribution in the wild

Results

Conclusions (Paper)
• Simple similarity-based method can solve even difficult problems

• many candidate authors

• limited length of known-text

• actual author might not be in candidate set

• Passable results even for snippets of only 100 words

• Method not usefull for small open candidate sets and limited
anonymous text

24

Approach Experiment Implementation
Authorship attribution in the wild

Results

Conclusions (Reproducability)
✔Main algorithm well described

✔Corpus the experiment was performed with available on the
author‘s website…

! …but a recollection and not the original one – not similar to the
original one in some points

! No description how the vectors are generated form the 4-grams
or how they are handled effectively within the programm

! Plugin Apache Lucene used for indexing not mentioned in paper

25

