SUMMER ACADEMY NIZZA 2015 - WORKGROUP 2: WHO WROTE THE WEB?

e
.

Moshe Koppel - Jonathan Schler - Shlomo Argamon

Authorship attribution
in the wild

.lllllmrs] i
/ ll/) “”"l'l)lll' .
on in the ,;
wild

III\I opp. 0, (
7/ K)] 1 S ey S /'lll” o
Dpel J II.II/JH ch €
h,
\r

Sdinop

,,,,,,

FABIAN MULLER

1

Approach Experiment Implementation Results

Agenda

* the approach proposed by Koppel et al.
* experiment, main algorithm and used data set

* my re-implementation of the experiment
* code samples

* encountered problems while implementing

~ * Results and conclusion

P

—_} Experiment >> Implementation >> Results >

Introduction

Simple problem Koppel et al.
Candidate authors small, closed set thousands
,Known text" v/ available X might be very limited

‘Actual authorin

e
. 74 /
s/ /
7 el
.

- . v vyes ? might be not
r .‘; ,.’:‘.' '5;-',"" ’andldate Set y g

—_} Experiment >> Implementation >> Results >

Introduction

Goals:

* high attribution precision

* acceptable amount of recall

* mesure effect of key factors:

1. number of candidates
2. size of known-text

3. size of anonymous text

Authorin set Known-text Authors

Koppel et al.

thousands

X might be very limited

? might be not

P

3

—_} Experiment »>> Implementation > > Results >
Methods of authorship attribution

2 main paradigms:

A"

* Similarity-based paradigm ’ o::\
* Machine-learning paradigm - 2
? G

3

—_} Experiment »>> Implementation > > Results >
Methods of authorship attribution

* Similarity-based paradigm =
» more appropriate for many ’ o
candidate authors =) >
. ? G
> mesure distance between \
anonymous and known text A

Attribution to most similar one

_ 4
—{ Approach >-> Implementation >> Results >

Corpus and data usage

* 10,000 blogs (blogger.com, August 2004) |
* balanced for gender

* mainly written in English

* Usage:
» 2,000 words of known text of each blog

* Snippet of 5oo words

A recollection of the corpus can

» Task: By which of the candidate authors (if any) 5.0

http://u.cs.biu.ac.il/~koppel/
was the snippet written? BlogCorpus.htm

5

Authorship attribution i
i Approach >-> Implementation >> Results >

Preparing the data:

Space-free character 4-grams

» String of characters...

* of length 4, includes no spaces

* of < 4 characters, surrounded by HEI IO WOErI d

spaces

_ * 250,000 unique, overlapping SFC4G's

‘measurable in any language, no background knowledge needed

5

Approach >- Implementation > Results >

Authorship attribution in the v

Preparing the data:

Space-free character 4-grams
» String of characters... H e" wo rl

» of length 4, includes no spaces

* of < 4 characters, surrounded by e' IO O I’| d
spaces
rid!

. o 6
Authorship attributic

Approach >- Implementation > Results >

Preparing the data:

Generating feature sets

Hell 1

0 1
ello 1 0 1
worl 0 1 1

. orld 0 1 1
// rld! 0 0 1

_ / “Hello" “world" “Hello world!™

/

Authorship attribution in't
i Approach >-> Implementation >> Results >

The main algorithm

Assumptions

AR
AN
* Known text of snippet’s author

text most similar to the snippet

. *Also if feature set is varied ~~

Authorship attribution in
i Approach >- Implementation >> Results >

The main algorithm

Pseudocode

repeat (ki times) {
randomly choose fraction k2 of feature set
find top mach using cosine similarity

}

for each (candidate author) {

:.- score(/) = proportion of times A is top match

¥ | Output:

if (maxscore () >o*) {arg max, score (")}

else { Don't know!}

Given:
* Snippet of length L1

* Known-texts of
length L2 for each of
C candidates

8

Authorship attribution i
i Approach >- Implementation >> Results >

The main algorithm

Pseudocode

repeat (ki times) {
randomly choose fraction k2 of feature set
find top mach using cosine similarity

5

for each (candidate author) {

| score(/) = proportion of times A is top match

/i

| Output:

if (maxscore () >o*) {arg max, score (")}

else { Don't know!}

Parameters:

S

k1: number of different
feature sets used

k2: fraction of possible
features of the set

a candidate author

threshold to be
reached by a
candidate autor

Authorship attribution | 10

Steps of reproduction [implementation

* pre-process corpus (\/) original corpus not available!
* read in data from files v
* extract plain text (\/) some improvements pending...

* generate space-free character 4-grams V'

:1‘ g enerate feature sets current algorithm too slow!

~* run main algorithm ToDo

Authorship attributic 2L
Approach >> Experiment >-> Results >

1) Pre-process corpus (V)

Original corpus Corpus from Prof. Koppel's website
collected in 2004 recollected later

10,000 blogs 19,320 blogs

all blogs mainly written in English also contains blogs in Chinese, etc.

_* Eliminated blogs with not enough text, ignored non-English characters

¢ included all space-free 4-grams as well as all words of length < 4

°w used k most frequent features in corpus

AUtNGIEES Approach Experiment - Results
2) Read data from files v

Java code

public ArrayList <String> generatedgramLists () {
File [] allNames = getFileNames/() ;
TreeSet <String> fourGrams = new TreeSet <> (),

// LOOP 1: Repeat for each file...
for (int 1 = 0; 1 < allNames.length; i++) {

try {
// Read from blog file and generate file with the same name to save 4grams

br = new BufferedReader(...);

pw = new PrintWriter (...);
String line; // Saves a single line read in by the buffered reader

boolean isPost = false;
// LOOP 2: Read blog file line by line until end of document is reached...

while ((line = br.readLine()) '= null) {

AutiGE Approach Experiment - Results
3) Extract plain text (v

Java code - 0 Example: XML file from blog corpus

<date>28,June,2004</date>
<post

if (line.startsWith("<post>")) {
isPost = true;
line = ""; // Reset so <post> is not added

} inally! Some colour to my posts.. ‘0@

if (line.endsWith("</post>")) {
isPost = false;
} </post>

// Remove non-content from line if it is betwee

if (isPost) { <date>27,June,2004</date>

<post>

. ® w

// Generate Array that contains all words (:

Sstring[] words = line.split(" "); I'm turning nocturnal from all the late nights w:
// LOOP 3: Repeat for each word feeling it sting. Horrible thing is school reope:
int 1 = words.length; if I can wake up on time or stay awake throughou
for (int 7 = 0; 7 < 1; J++) {

</post>

- = 0w

Authorshi

Approach Experiment - Results
4) Generate 4-grams v

Java code
for (int jJ = 0; 7 < 1; J++) {
if (words[]J].length() <= 4) {

// Add 4-gram to tree and write into 4-gram file of this blog

if ('words[]].equals("")) {
fourGrams.add (words[]]) ;
pw.print (words[]j]1+" "),
pw.println(""); // Go to next line in 4-gram file of this blog

}

else {

// For example: "Hello" has length of 5

// So loop is repeated 2 times (at the second time k=1 <= 1

// At the first time the suybstring is "Hell" (char 0-4)

// and at the second time it is "ello" (char 1-5)

for (int k = 0U; k <= words[]].length() - ;o k++) |
fourGrams.add (words[]] .substring(k, k+4));
pw.print (words[]] .substring(k, k+4)+" ") ;

Authorshir

Approach Experiment - Results
4) Generate 4-grams v

File that contains all space-free character 4-grams - B 4-gram file of one single blog

slas lash ashd shdo hdot

rals aise 1ises

lots

of

inte nter tere eres rest esti stin ting
thou houg ough ught ghts

abou bout

bann anne nner
ads

The
idea

is
to

Authorship attribution in o
Approach >> Experiment >-> Results >

5) Generate feature sets

Pseudo code
load all space-free character 4-grams from file into list L2
load 4-grams of last oo words from random blog (snippet) to list
generate feature set for snippet {

declare array A1 of the length of L1 and fill with O’s

foreach 4-gramin L1 {

foreach 4-gramin | > {
if (4-grams from arrays of both loops match) {

978 increase value of A1 at the position of iterator of outer loop by 1
. .
save A1 to file
| repeat steps feature set generation similarly for each of the 10,000 known texts

16

)

Authorship attribution in
Approach >> Experiment >-> Results

5) Generate feature sets

Pseudo code
load all space-free character 4-grams from file into list L2
load 4-grams of last oo words from random blog (snippe
generate feature set for snippet {

declare array A1 of the length of L1 and fill with O’s

foreach 4-gramin L1 { = 250,000,000,000,000

foreach 4-gramin | > {
if (4-grams from arrays of both loops match) {

978 increase value of A1 at the position of iterator of outer loop by 1
. .
save A1 to file
| repeat steps feature set generation similarly for each of the 10,000 known texts

10,000 (number of blogs)
* 250,000 (all possible 4-grams)
* 100,000 (4-grams per blog)

Authorship attribution | 17
Approach >> Experiment >-> Results >

Software architecture

-5 - -
w== Data Access Programm logic EI User interface
DA Application FeatureSet <interface>

- br : BufferedReader Ul

- pw : PrintWriter : : _ +-d yAN

+ configExperimet() : void represents

+ countBlogs() : int + configPaths() : void

+ getFileNames() : File[] +runExperiment() : void | Ferser Ul_Console

+ getAllAuthorlds() : int[] + getRandomSnippet (int) : void _
| + generate4GramLists() is Author _ _
| - ArrayList <String> 1.1 | of + configParameters() : void
' . GramsOfFile + showError(String) : void

fG, int, boolean) KnownText > + showMessage(String) : void
rrayll_ist I<String> % + showMainMenu() : void
| Snippet > - askForConfig() : void

Authorship attribution | 18
P Approach >> Experiment >> Implementation >-

Parameters

k1: number of different feature sets used

k2: fraction of possible features per iteration

number of candidate authors

threshold to be reached by a candidate autor

19

Authorship ¢
i s Approach Experiment Implementation -

k2: fraction of features per iteration

(Iterations)
(Threshold)

(Candidate authors)

(Snippet length)

(Known-text length)

Approach Experiment Implementation -
number of candidate authors

(Iterations)

(Features [iteration)

’
I

(Threshold)

(Snippet length)

(Known-text length)

'.—————————;‘—_—,-"—

Authorship ¢
i s Approach Experiment Implementation -

L1: Snippet length

k1 = 100 (Iterations)
k2 = 40% (Features / iteration)
- 90% (Threshold)
= 10,000 (Candidate authors)
L2 = 2,000 (Known-text length)

Approach Experiment Implementation -
L2: Known-text length

k1 = 100 (Iterations)
k2 = 40% (Features / iteration)
- 90% (Threshold)
= 10,000 (Candidate authors)
L1= 50O (Snippet length)

0.2 0.3
R

2000 ====1000

Authorship attributi 23
Approach >> Experiment >> Implementation >-

Abstract: Extention of the algorithm

» Usefull for forensic applications:
Estimated probability that assigned author is actual one

* Precision and coverage can be predicted using regression

* Probability p:
* Probability that author is in candidate set
* Value [0 - 1.0] provided by user

* E: Probability that some author is assigned when the actual one is not
in the candidate set

. prHsP . . _
T HA(1—p)oE Probability assigned author is the actual one

Authorship attributic 24
Approach >> Experiment >> Implementation >> Results >

Conclusions (Paper)

* Simple similarity-based method can solve even difficult problems
* many candidate authors
* limited length of known-text

e actual author might not be in candidate set

~ * Passable results even for snippets of only 100 words

% Method not usefull for small open candidate sets and limited
anonymous text

25

Authorship attribu
Approach >> Experiment >> Implementation >> Results

)

Conclusions (Reproducability)
v Main algorithm well described

v Corpus the experiment was performed with available on the
author's website...

...but a recollection and not the original one — not similar to the
original one in some points

~ Nodescription how the vectors are generated form the 4-grams
~ or how they are handled effectively within the programm

Plugin Apache Lucene used for indexing not mentioned in paper

