Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vecto Machines Naive Bayes Tree Learners (J48)

Approach

Results

Assessment

Own imple mentation

Sources

Syntactic N-grams as Machine Learning Features for Natural Language Processing

Marvin Gülzow

Table of Contents

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vecto Machines Naive Bayes Tree Learners (J48)

Approach

Results

Assessment

Own implementation

Sources

Basics

- Syntactic N-Grams
- Support Vector Machines

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Naive Bayes
- Tree Learners (J48)
- Approach
- Results
- Assessment
- Own implementation
- 6 Sources

5

TL;DR

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vector Machines Naive Bayes Tree Learners (J48)

Approach

Results

Assessment

Own imple mentation

Sources

- Introduce Syntactic n-grams
- Use them for authorship attribution
- Compare machine learning approaches

- Support Vector Machines
- Naive Bayes
- J48 (decision tree)
- \Rightarrow SVM + SN-Grams work well

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vecto Machines Naive Bayes Tree Learners (J48)

Approach

Results

Assessment

Own implementation

Sources

Section 1

Basics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

N-Grams

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vecto Machines Naive Bayes Tree Learners (J48)

Approach

Results

Assessment

Own imple mentation

Sources

Definition

n-gram:

$$w = (w_1, \ldots, w_n) \in \Sigma$$

- n sequential items from a text
- "item": characters, words, phonetic units, linguistic features, ...

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- "sequential": Neighborship relation required
- \Rightarrow Text fragments
- \Rightarrow Probatilistic features

[2]

Syntactic N-Gram:

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vector Machines Naive Bayes Tree Learners (J48)

Approach

Results

Assessment

Own imple mentation

Sources

Definition

Syntactic N-Gram: "An n-gram obtained based on the order in which the elements appear in syntactic trees"

- Items: SR-Tag (syntactic-relation tag)
- Neighborship relation: Lie on same path
- Syntactic tree: Parse result according to formal grammar

- Issue: Natural language processing?
- Stanford NLP suite
- "SN-Grams of SR-tags"

[1], [2]

SN-Grams Example

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams

Machines Naive Bayes Tree Learners (J48)

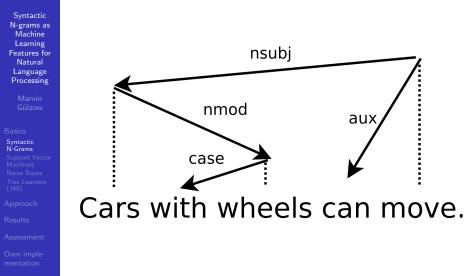
Approach

Results

Assessmen

Own imple mentation

Sources

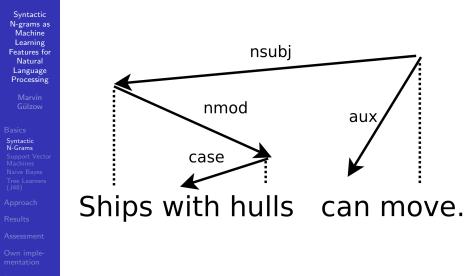

"Cars with wheels can move"

```
1 -> move/VB (root)
2 -> Cars/NNS (nsubj)
3 -> wheels/NNS (nmod:with)
4 -> with/IN (case)
5 -> can/MD (aux)
```

"Ships with hulls can move"

```
1 -> move/VB (root)
2 -> Ships/NNS (nsubj)
3 -> hulls/NNS (nmod:with)
4 -> with/IN (case)
5 -> can/MD (aux)
```

SN-Grams Example



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Sources

SN-Grams Example

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Sources

Resulting SN-Grams

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Ve

Naive Bayes Tree Learners (J48)

Approach

Results

Assessment

Own imple mentation

Sources

• (aux)

- (nsubj, nmod)
- (nmod, case)
- (nsubj, nmod, case)
- \Rightarrow Independent of content.

Syntactic N-Grams

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams

- Support Vecto Machines Naive Bayes Tree Learners (J48)
- Approach
- Results
- Assessment
- Own imple mentation
- Sources

Advantages

• "real" neighbors: No arbitrary influence from content

- Assumption: Captures author's writing style
- Disadvantages
 - Preprocessing is expensive (only once though).
 - Parser Quality determines results
 - Good parsers not available for every language

Support Vector Machine (SVM)

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

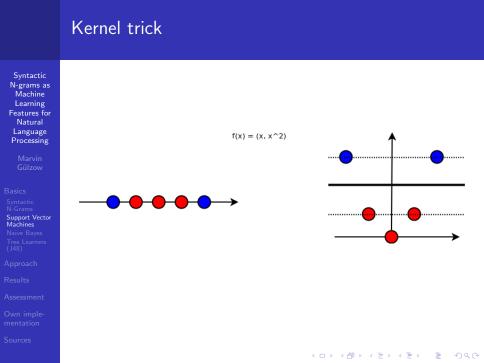
Syntactic N-Grams Support Vector Machines Naive Bayes Tree Learners (J48)

[4]

Approach

Results

Assessment


Own imple mentation

Sources

- Deterministic binary classifier
- linear separation of classes
- Separator: Hyperplane
- ullet ightarrow Gap between classes has maximum width

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Non-linearly separable Data?

Kernel trick

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vector Machines Naive Bayes Tree Learners (J48)

Approach

Results

Assessment

Own implementation

Sources

- Add dimensions
- Warp data
- ullet \Rightarrow Transformation via kernel-function
- ullet \Rightarrow Restricted to numerical data
- → Multiclass-classification via multiple Binary classification

SVM learning

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vector Machines Naive Bayes Tree Learners (J48)

[6]

Approach

Results

Assessment

Own imple mentation

Sources

- Choose appropriate kernel (human)
- Project data into target vector space
- Find optimum separator
 - Maximize distance of each object to separator
 - \Rightarrow Items defining border are support vectors

Support Vector Machine (SVM)

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vector Machines Naive Bayes Tree Learners (J48)

Approach

Results

Assessment

[5]

Own imple mentation

Sources

Advantages

- Non-linear spearation
- "Tunable" to noise
- More robust against biased data
- Unique, global solution exists
- $\bullet \ \Rightarrow \mathsf{High} \ \mathsf{accuracy}$
- Disadvantages
 - Only work on numerical data
 - Learned model not interpretable

• Training in $O(n^2)$

Support Vector Machine (SVM)

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vector Machines Naive Bayes Tree Learners (J48)

Approach

Results

Assessment

Own imple mentation

Sources

- WEKA/LibSVM
- SVMs work on numerical Data
- We have: Nominal data
- ullet \Rightarrow Map semantic relation to numbers

Naive Bayes

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vect Machines Naive Bayes Tree Learners (148)

Approach

[4]

Results

Assessment

Own imple mentation

Sources

- How many times does an attribute appear in a class?
- ullet \Rightarrow Look at each attribute of item to classify
- ullet \Rightarrow Probabilities determine class
- Each classified object contributes to training set

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Used as a reference for other learners

Naive Bayes

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vect Machines Naive Bayes

(J48)

Approach

Results

Assessmen

Own imple mentation

Sources

Bayes' Theorem

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

• Naïve assumption: all attributes are independant

۲

$$P(E = (a_1, \ldots, a_n)|h) = \prod_{a_i \in E} P(a_i|h)$$

 $P(a_i|h) = rac{\# ext{data from class } h ext{ with } A_i = a_i}{\# ext{data from class } h}$

• Object class \Rightarrow most probable

[4]

Naive Bayes

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vecto Machines Naive Bayes Tree Learners (148)

Approach

Results

Assessment

Own implementation

Sources

Advantages

- Easy to implement
- Fast implementation possible
- Learns with each example
- Somewhat accurate
- Standard comparison for other classifiers

Disadvantages

• Attributes are usually not independant

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Probabilities may be unavailable

[6]

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vecto Machines Naive Bayes Tree Learners (148)

Approach

Results

Assessment

Own imple mentation

Sources

- Descision tree builder
- Entropy based
- \Rightarrow Which attribute yields the highest information gain?

- Builds optimum descision tree
- \Rightarrow Human-interpretable model

J48 - Information Gain

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vector Machines Naive Bayes Tree Learners (J48)

Approach

Results

Assessment

Own implementation

Sources

- Given: Labelled dataset
- Find: Attribute which is optimal for discriminating between classes
- Calculate entropy of training set T

$$e(T) = -\sum_{i=1}^{k} p_i \cdot \log_2 p_i$$

• Calculate information gain for attribute A

$$IG(T,A) = e(T) - \sum_{i=1}^{m} \frac{|T_i|}{|T|} \cdot e(T_i)$$

- ullet \Rightarrow Tree splits data on this attribute
- Repeat
- Other split critera: Gini-Index, χ^2 , Randomly, \ldots

[6]

J48

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vecto Machines Naive Bayes Tree Learners (149)

Approach

Results

Assessment

Own implementation

Sources

Advantages

- Model can be interpreted for other uses
- Fast classification (precomputed model)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Can fix missing values (parser errors)

Disadvantages

- Require pruning
- Sensitive to noise
- Greedy approach can get stuck

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vecto Machines Naive Bayes Tree Learners (J48)

Approach

Results

Assessment

Own imple mentation

Sources

Section 2

Approach

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 のへで

Dataset

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vector Machines Naive Bayes Tree Learners (J48)

Approach

Results

Assessment

Own imple mentation

Sources

- English novels
 - Booth Tarkington (13)
 - George Vaizey (13)
 - Louis Tracy (13)
- 24 for Training, 11 for classification

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Total of 6.1 MB

Algorithm

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vecto Machines Naive Bayes Tree Learners (J48)

Approach

Results

Assessment

Own imple mentation

Sources

- Parse Corpus using StanfordNLP
- Extract syntactic relations (SR-tags)
- Construct SN-grams \Rightarrow Profile
- Classify as usual
- Stablish baseline using other classifiers

Experiments

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vector Machines Naive Bayes Tree Learners (J48)

Approach

Results

Assessment

Own implementation

Sources

N-Grams

- Word based
- POS (Part Of Speech)
- Character based
- SR-Tags
- Vary n-gram size form 2 to 5
- Profile sizes from 400 to 11000

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Use J48 and NB as baseline

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vecto Machines Naive Bayes Tree Learners (J48)

Approach

Results

Assessment

Own imple mentation

Sources

Section 3

Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Results - In brief

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vecto Machines Naive Bayes Tree Learners (J48)

Approach

Results

Assessment

Own imple mentation

Sources

- All classifiers better than 50% accuracy
- SVMs outperform other classifiers
- SR-tags yield better results than other tags
- Bigrams and trigrams better than 4- and 5-grams

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• 100% accuracy in some cases

[1], [3]

	Results
Syntactic N-grams as Machine Learning Features for Natural Language Processing Marvin Gülzow Sasics Syntactic N-Grams Support Vector	<pre>1 // Show tables from the paper now. 2 goto PAPER_RESULTS;</pre>
Machines Naive Bayes Tree Learners (J48)	
Approach	
Results	
Assessment	
Own imple- nentation	
Sources	
	< □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ < < ■ > < ■ < < ■ > < < ■ < < ■ > < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < > < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < < ■ < <

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vecto Machines Naive Bayes Tree Learners (J48)

Approach

Results

Assessment

Own imple mentation

Sources

Section 4

Assessment

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Positive

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vecto Machines Naive Bayes Tree Learners (J48)

Approach

Results

Assessment

Own imple mentation

Sources

- SN-Grams provably more accurate than other approaches
- Able to reliably identify author in a small pool of possible authors

- Solid theoretical basis (SVM and parsing)
- Hard to hide author's grammatical habits

Negative

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vector Machines Naive Bayes Tree Learners (J48)

Approach

Results

Assessment

Own implementation

Sources

- Parsing takes "considerable time" on 39 novels
 ⇒ Mentioned in paper, as expected
- Parser has extreme influence on result
- \Rightarrow What about "wierd" texts?
 - Non-natives with the speaking of bad grammatics

- Fantasy/Scifi "bogus" words
- SVM models not interpretable

Paper quality

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vector Machines Naive Bayes Tree Learners (J48)

Approach

Results

Assessment

Own implementation

Sources

Positive:

- Good explanation of SN-Grams
- Thorough comparison of many cases
- Clear results
- New, practical method found

Negative:

- Hard to reproduce:
 - Examples inconsistent
 - No concrete parameters given (Learners!)

- Tool versions missing
- Small set of candidate authors (3)

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vecto Machines Naive Bayes Tree Learners (J48)

Approach

Results

Assessment

Own implementation

Sources

Section 5

Own implementation

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

æ

Own implementation

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vecto Machines Naive Bayes Tree Learners (J48)

Approach

Results

Assessment

Own implementation

Sources

Not just yet :(

・ロット (雪) () () () ()

₹ 9Q@

Syntactic N-grams as Machine Learning Features for Natural Language Processing

> Marvin Gülzow

Basics

Syntactic N-Grams Support Vecto Machines Naive Bayes Tree Learners (J48)

Approach

Results

Assessment

Own implementation

Sources

Section 6

Sources

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Sources

Syntactic N-grams as Machine Learning Features for Natural Language Processing

Sources

G. Sidorov et. al.: Syntactic N-grams as Machine learning Features for Natual Language Processing, CIC Mexico, IPN Mexico, University of the Aegean (Greece)

(https://class.coursera.org/nlp/lecture/17)

Efstathios Stamatatos, A Survey of Modern Authorship

Communication Systems Eng, University of the Aegean

Stanford Cousera lecture on language modeling

Attribution Methods, Dept. of Information and

Michael Berthold and Iris Adae: SVMs and Rule Learning Lecture held at the University of Constance, Winter term 2014/15

Laura Auria and Rouslan A. Moro: Support Vector Machines (SVM) as a Technique for Solvency Analysis, DIW Berlin, 2008 ▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()