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TL;DR

Introduce Syntactic n-grams

Use them for authorship attribution

Compare machine learning approaches

Support Vector Machines
Naive Bayes
J48 (decision tree)

⇒ SVM + SN-Grams work well
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Section 1

Basics
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N-Grams

Definition
n-gram:

w = (w1, . . . ,wn) ∈ Σ

n sequential items from a text

“item”: characters, words, phonetic units, linguistic
features, . . .

“sequential”: Neighborship relation required

⇒ Text fragments

⇒ Probatilistic features

[2]
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Syntactic N-Gram:

Definition

Syntactic N-Gram: “An n-gram obtained based on the order
in which the elements appear in syntactic trees”

Items: SR-Tag (syntactic-relation tag)

Neighborship relation: Lie on same path

Syntactic tree: Parse result according to formal grammar

Issue: Natural language processing?

Stanford NLP suite

“SN-Grams of SR-tags”

[1], [2]
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SN-Grams Example

“Cars with wheels can move”

1 -> move/VB (root)

2 -> Cars/NNS (nsubj)

3 -> wheels/NNS (nmod:with)

4 -> with/IN (case)

5 -> can/MD (aux)

“Ships with hulls can move”

1 -> move/VB (root)

2 -> Ships/NNS (nsubj)

3 -> hulls/NNS (nmod:with)

4 -> with/IN (case)

5 -> can/MD (aux)
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SN-Grams Example
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SN-Grams Example
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Resulting SN-Grams

(aux)

(nsubj, nmod)

(nmod, case)

(nsubj, nmod, case)

⇒ Independent of content.
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Syntactic N-Grams

Advantages

“real” neighbors: No arbitrary influence from content
Assumption: Captures author’s writing style

Disadvantages

Preprocessing is expensive (only once though).
Parser Quality determines results
Good parsers not available for every language
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Support Vector Machine (SVM)

Deterministic binary classifier

linear separation of classes

Separator: Hyperplane

→ Gap between classes has maximum width

Non-linearly separable Data?

[4]
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Kernel trick
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Kernel trick

Add dimensions

Warp data

⇒ Transformation via kernel-function

⇒ Restricted to numerical data

⇒ Multiclass-classification via multiple Binary
classification
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SVM learning

1 Choose appropriate kernel (human)

2 Project data into target vector space
3 Find optimum separator

Maximize distance of each object to separator
⇒ Items defining border are support vectors

[6]
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Support Vector Machine (SVM)

Advantages

Non-linear spearation
“Tunable” to noise
More robust against biased data
Unique, global solution exists
⇒ High accuracy

Disadvantages

Only work on numerical data
Learned model not interpretable
Training in O(n2)

[5]
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Support Vector Machine (SVM)

WEKA/LibSVM

SVMs work on numerical Data

We have: Nominal data

⇒ Map semantic relation to numbers
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Naive Bayes

How many times does an attribute appear in a class?

⇒ Look at each attribute of item to classify

⇒ Probabilities determine class

Each classified object contributes to training set

Used as a reference for other learners

[4]
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Naive Bayes

Bayes’ Theorem

P(A|B) =
P(B|A) · P(A)

P(B)

Näıve assumption: all attributes are independant

P(E = (a1, . . . , an)|h) =
∏
ai∈E

P(ai |h)

P(ai |h) =
#data from class h with Ai = ai

#data from class h

Object class ⇒ most probable

[4]
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Naive Bayes

Advantages

Easy to implement

Fast implementation possible

Learns with each example

Somewhat accurate

Standard comparison for other classifiers

Disadvantages

Attributes are usually not independant

Probabilities may be unavailable
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J48

Descision tree builder

Entropy based

⇒ Which attribute yields the highest information gain?

Builds optimum descision tree

⇒ Human-interpretable model

[6]
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J48 - Information Gain

Given: Labelled dataset

Find: Attribute which is optimal for discriminating
between classes

Calculate entropy of training set T

e(T ) = −
k∑

i=1

pi · log2 pi

Calculate information gain for attribute A

IG (T ,A) = e(T )−
m∑
i=1

|Ti |
|T |
· e(Ti )

⇒ Tree splits data on this attribute

Repeat

Other split critera: Gini-Index, χ2, Randomly, . . .

[6]
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J48

Advantages

Model can be interpreted for other uses

Fast classification (precomputed model)

Can fix missing values (parser errors)

Disadvantages

Require pruning

Sensitive to noise

Greedy approach can get stuck
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Section 2

Approach
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Dataset

English novels

Booth Tarkington (13)
George Vaizey (13)
Louis Tracy (13)

24 for Training, 11 for classification

Total of 6.1 MB
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Algorithm

1 Parse Corpus using StanfordNLP

2 Extract syntactic relations (SR-tags)

3 Construct SN-grams ⇒ Profile

4 Classify as usual

5 Establish baseline using other classifiers
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Experiments

N-Grams

Word based
POS (Part Of Speech)
Character based
SR-Tags

Vary n-gram size form 2 to 5

Profile sizes from 400 to 11000

Use J48 and NB as baseline
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Section 3

Results
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Results - In brief

All classifiers better than 50% accuracy

SVMs outperform other classifiers

SR-tags yield better results than other tags

Bigrams and trigrams better than 4- and 5-grams

100% accuracy in some cases

[1], [3]
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Results

1 // Show tables from the paper now.

2 goto PAPER_RESULTS;
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Section 4

Assessment
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Positive

SN-Grams provably more accurate than other approaches

Able to reliably identify author in a small pool of possible
authors

Solid theoretical basis (SVM and parsing)

Hard to hide author’s grammatical habits
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Negative

Parsing takes “considerable time” on 39 novels
⇒ Mentioned in paper, as expected

Parser has extreme influence on result

⇒ What about “wierd” texts?

Non-natives with the speaking of bad grammatics
Fantasy/Scifi “bogus” words

SVM models not interpretable
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Paper quality

Positive:

Good explanation of SN-Grams

Thorough comparison of many cases

Clear results

New, practical method found

Negative:

Hard to reproduce:

Examples inconsistent
No concrete parameters given (Learners!)
Tool versions missing

Small set of candidate authors (3)
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Section 5

Own implementation
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Own implementation

Not just yet :(
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Sources
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Sources

G. Sidorov et. al.: Syntactic N-grams as Machine learning
Features for Natual Language Processing, CIC Mexico, IPN
Mexico, University of the Aegean (Greece)

Stanford Cousera lecture on language modeling
(https://class.coursera.org/nlp/lecture/17)

Efstathios Stamatatos, A Survey of Modern Authorship
Attribution Methods, Dept. of Information and
Communication Systems Eng, University of the Aegean

Michael Berthold and Iris Adae: SVMs and Rule Learning
Lecture held at the University of Constance, Winter term
2014/15

Laura Auria and Rouslan A. Moro: Support Vector
Machines (SVM) as a Technique for Solvency Analysis,
DIW Berlin, 2008

Daniel Keim: Analyse und Visualisierung von Daten
Lecture held at the University of Constance, Winter term
2014/15

https://class.coursera.org/nlp/lecture/17
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