
Pedigree Tracking in the Face of Ancillary Content
Eugene R. Creswick and Emi Fujioka and Terrance Goan1

Abstract. The accurate tracking and retrieval of content pedigree is
a quickly growing requirement as our abilities to create information
assets increases exponentially. Plagiarism detection, accurate accred-
itation, and classification tasks all rely on the ability to determine
where content is being used and where it originated. We present an
approach to document pedigree tracking that is based on an efficient
disk-based data structure and the use of two contrasting collections of
historical text. These collections enable content of two types (or de-
grees of importance) to be defined and accounted for when locating
documents with overlapping content. This approach is resilient in the
face of substantial ancillary content and paraphrasing, two common
sources of error in existing content tracking techniques.

1 INTRODUCTION
It has become clear that our ability to create vast information as-
sets far outstrips our ability to exploit and protect them. The accurate
tracking of information use and reuse in documents and on the Web is
important for many reasons such as detecting unauthorized use, and
properly tracking citations during an authoring session. One particu-
larly challenging application arises in the world’s intelligence com-
munities as they seek to: improve information awareness amongst
analysts; improve the reliability of intelligence; safely share informa-
tion with warfighters and allies; and root out malicious insiders. One
means to mitigating these challenges is to provide reliable knowledge
of the provenance (or ideally, pedigree) of documents.

This knowledge would allow, for instance, analysts to identify the
source of information underpinning an intelligence report. Once the
provenance of a document (or portion of a document) is known, that
knowledge can be used to: create and enforce classification policy
rules at a given site, narrow the scope of a search for information
leaks, and enhance the authoring and reading processes by automat-
ically presenting references to related documents.

There are two primary approaches to establishing information
provenance. First, we might seek to develop information systems or
processes that utilize meta-data to track the source of data imported
into new intelligence products. Unfortunately, the wide variety of
information systems makes such an approach impractical, and the
adoption of techniques that would allow existing systems to easily
communicate is highly unlikely.

The more attractive alternative is to recover provenance knowl-
edge on-demand, as required by users. This approach is exemplified
by plagiarism detection tools. These tools apply various methods of
document similarity detection to determine when content has been
reused; however, all of the approaches we are aware of can be bi-
ased by the presence of common, inconsequential text (often termed
boilerplate—content that has relatively little semantic meaning com-
pared to its context).

1 Stottler Henke Associates, Inc., email: rcreswick@stottlerhenke.com

Content is reused for various purposes in many domains—not all
of which involve malicious intent. For instance, internal communica-
tions and documents such as whitepapers and grant proposals com-
monly reuse sections of text. Frequently reused sections include the
company descriptions, key personnel (resumés), introductions and
portions of related work. Furthermore, the formatting of documents
within a company is generally standardized: all documents of a given
type often share fixed section headings, page headers and page foot-
ers. These duplicated portions may or may not constitute a meaning-
ful link between two given documents. In many cases, all of these
areas will be considered boilerplate, while in other situations some
of these duplicated areas may be of consequence. Headers and foot-
ers, for example, are probably always boilerplate; however, the same
cannot be said of introductions.

We present a novel approach to pedigree tracking in which content
can be marked as either open or sensitive. Open content is considered
to be inconsequential, and will not be incorporated in the overlapping
content that is used to determine a document’s pedigree. All other
content is marked as sensitive.

We begin with a discussion of the related work in plagiarism de-
tection, information provenance, and content tracking in Section 2.
In Section 3, we present the InfoTracker algorithm for document
pedigree tracking. Section 4 describes our initial evaluation of In-
foTracker on the document pedigree task. Finally, we summarize our
findings and discuss directions for future work in Section 5.

2 RELATED WORK

Metzler, et al. present five levels of similarity used to measure the
relationship between two portions of text and they examine differ-
ent methods of comparing sentences and documents [8]. The levels
considered cover the range of overlapping semantics to exact dupli-
cation. A measure of similarly with a similar purpose is Levenshtein
distance—a method that calculates the number of modifications to
a string needed to transform it into another given string. This tech-
nique provides a quantitative measure of the difference between any
two arbitrary strings in quadratic time. This is well suited to appli-
cations that involve short strings, such as spell checking individual
words in a document. As is the case with the techniques presented
by Metzler, et al. Levenshtein distance is a direct pairwise compari-
son of two fixed strings. While such a gamut of comparisons is well
suited to determining if two portions of text are related, the pairwise
comparisons required to determine their similarity is prohibitively
expensive when the corpus of documents to search reaches the hun-
dreds or thousands.

Jagadish, et al. address the topic of similarity-based queries, in
which the results are based on similarity rather than exact match [7].
While their approach is able to detect strings that are not exact du-
plicates, it is only able to do so for types of similarity that have been

exactly specified in advance. The approach is also targeted at com-
paring individual characters (or more generally, symbols) for simi-
larity (‘a’ vs. ‘â’, for example). This may be a worthy addition to our
approach, as it could ease the handling of content that includes Uni-
code characters or the results of optical character recognition (OCR).

Eppstein, et al. present methods for fast sequence alignment in
the context of RNA analysis [3]. Their approach is similar to the
fragment-based approach presented by Wilbur and Lipman [11].
There are similarities between using text fragments and suffixes, but
both Eppstein, et al. as well as Wilbur and Lipman’s approaches re-
quire pairwise comparisons, whereas our approach uses an index of
the historical content to speed retrieval.

Fingerprinting, as presented by Hoad and Zobel [6], hashes select
substrings and compares the aggregated results for each document.
Unfortunately this approach is highly sensitive to the choice of sub-
strings. Depending on the selection approach used (of which there
are myriad), the fingerprints for two documents may be widely diver-
gent while the documents differ only by a few insertions or deletions.
Stein presents a similar approach to fingerprinting termed “fuzzy fin-
gerprints” that calculates a hash of a document based on the distri-
bution of common prefixes [9]. This hash is calculated in a way that
“fuzzifies” the result, increasing the chances that similar documents
will have the same hash. Hash collisions are then indicative of doc-
ument similarity. Vector Space models have also been shown to be
successful, and in the case of Hoad and Zobel, such approaches out-
performed the fingerprinting approach in all respects [6].

The commercial TurnItIn [1] plagiarism detection service utilizes
a different approach—it relies on detecting long strings of words
shared by co-derived documents. Regrettably, this tactic is suscepti-
ble to false-negative errors when faced with heavily edited text (edits
reduce the chance that long strings will match) and false-positive er-
rors when faced with shared but inconsequential text. Indeed, such
boilerplate content can sway all of the plagiarism detection tech-
niques that the authors are aware of.

Eissen, et al. present a method of using suffix trees for document
similarity that is very similar to our InfoTracker approach [2]. Eis-
sen, et al. construct a suffix tree from two documents and calculate
similarity based on the edges that are shared between the two docu-
ments in the tree. This approach differs from ours in one fundamental
way: Eissen, et al. do not incorporate any filtering content (such as
boilerplate) into the similarity calculations.

3 ALGORITHM DESCRIPTION

We have developed a new approach to document pedigree tracking
and implemented a prototype—termed InfoTracker—in order to sup-
port new document pedigree tracking applications and to overcome
the shortcomings of past techniques.

Fundamental to our InfoTracker system is the concept of a suffix
tree [10], which allows for fast indexing and querying of the entire
content of indexed text. Our contribution is in the development of a
means to detect derivative text (and thereby information provenance)
in the presence of substantial ancillary content.

InfoTracker accomplishes this by contrasting two distinct collec-
tions of text, one composed of content of interest (eg: confidential in-
formation in intelligence reports) and the other composed of benign
or “uninteresting” text. Some examples of “uninteresting” text are
publicly available (and therefore unclassified) web documents, open-
source news articles, document headers, footers and other common
text. The prior collection of content represents the initial sensitive
collection, while the later collection of content represents the initial

open collection. These collections also need not be in separate docu-
ments, rather, parts of a document can be considered sensitive while
other portions are considered open.

While the suffix tree is a very strong foundation upon which to de-
velop applications seeking to detect overlapping content, it is not in
and of itself sufficient to deliver the capabilities described above. For
instance, employed naively, these data structures may generate very
high false alarm rates due to the inconsequential overlaps amongst
documents that result from institutional boilerplate, document struc-
ture (e.g., “Figure 1”, page headers and footers, etc.), or common
figures of speech. We have addressed this problem by devising a
novel extension to the suffix trees that allows us to contrast differ-
ent corpora. In particular, our approach utilizes a large randomly se-
lected collection of texts to identify those common word sequences
that may occur by chance and are therefore not useful in determin-
ing co-derived text. Consider the example in Figure 1, which shows
a simplified representation of the text index. The suffix tree stores
all suffixes of the sequence of text representing a document. The fig-
ure shows how we can utilize information about the source of text
to identify those sequences of characters/words that appear unique
to the documents with content we wish to track. In this example, In-
foTracker would find that any document containing either “as their
hideout” or “hotel as their hideout” shared a common source with
document s1. The content of Figure 1 could be drawn from multi-
ple sources: the benign terms may originate in newspapers, while the
sensitive text may be found in an internal report (for example).

Figure 1. A simplified visualization of the suffix tree built for a small
sample of content. The storage details have been omitted for clarity.

InfoTracker is able to accurately judge the likelihood that text
strings could be reproduced independently by analyzing string over-
laps in the light of general language usage. In other words, while
previous approaches exploit the rareness of long strings, InfoTracker
exploits its greater knowledge of common text patterns to recognize
much shorter strings of text that are likely to be derived from other
historical documents. This allows InfoTracker to succeed in a num-
ber of situations where past approaches may fail, including identifi-
cation of co-derivative relationships between paraphrases or between
documents processed with different OCR systems (each of which
generates its own errors).

InfoTracker indexes the two collections (of open and sensitive
text) with an implementation of a suffix tree based on a String B-
Tree (The use of a String B-Tree enables processing of document

collections that will not fit in memory [4].) When building the suffix
tree, InfoTracker keeps track of the source of each suffix and whether
that suffix was found in a section of content marked as open. It does
this by annotating the leaves of the suffix tree with references to the
source documents and a Boolean flag that indicates whether the suf-
fix is open or sensitive.

When a query document is submitted to InfoTracker, a fixed-sized
window is initialized at the start of the query text. (We have found
that windows in the range of 40-80 characters work well.) The root
of the suffix tree is checked for an edge labeled with the first token
in the window. If the token is found, that token is consumed and
the search continues from the resulting node in the suffix tree with
the next token in the window. This continues until the suffix tree is
no longer able to match tokens in the document or the end of the
query is reached. If the matched text is not longer than the size of the
window, the text is discarded. If the matched text is longer than the
window, then the index and length of that text in the query document
is stored along with the open or sensitive state of the overlap and
a pointer to the overlapping document. In either case, the window
is then shifted forward one token, and the search repeats from the
root of the suffix tree. This procedure iterates across the entire query
document, collecting each overlapping sub-string that is longer than
the window size.

Once these overlaps have been collected, the set of open regions
of text are subtracted from the set of sensitive regions of text. For
example, if a sensitive overlap spans from index 0 to index 100, and
an open overlap spans from index 50 to index 120, then the result is
a sensitive overlap from index 0 to index 49. The remaining sensitive
overlaps are filtered once again to remove any that are now shorter
than the window length.

Each of the resulting overlaps has a pointer to a document that
contains sensitive content used in the query document. However, in
our experience, this list of source documents is still very large (106–
233 source documents were found for each query in our experiment).
Some of the overlapping portions of text are the result of an incom-
plete open collection, and should be filtered further. The principle
idea is that the overlapping portions of text that appear in many doc-
uments (eg: section titles, like “EVALUATION”) are of less interest
than portions of text that appear in few documents (such as content
about specific methodologies). To leverage this, we have defined a
measure of inverse overlap frequency (IOF) for each overlapping sec-
tion of text.

For a given overlap, all of the documents that contain that content
are collected and aligned based on the location of the overlapping
text in the query document. For example, if the phrase “an ontol-
ogy” occurs in two historical documents, but one of the documents
contains additional duplicated text: “an ontology improved”, then the
matching portions of the overlapping phrases are aligned2:

Overlap 1: an ontology
Overlap 2: an ontology improved

The overlap frequency is then calculated for each character index in
the overlapping text. In this example, the overlap frequencies are:

Overlap 1: an ontology
Overlap 2: an ontology improved
OF: 22222222222111111111

Note that the “o” in “improved” has an overlap frequency of 1 be-
cause there is no corresponding character at that index in Overlap 1.
2 The example strings used here have been shortened to reduce the complexity

of the example. The actual strings detected are somewhat longer.

The overlap frequency indicates how common a given portion of
text is, but we are more interested in the content that is rare. Therefore
we simply invert the overlap frequency directly, as shown in Equa-
tion (1). In the example above, each of the characters in “ improved”
have an OF of 1. The characters in “an ontology” each have an OF of
2.

iofi =
1

overlaps containing character at i
(1)

Equation (2) shows the IOF calculation for the first character of over-
lap 2:

iof0 =
1

2
= 0.5 (2)

The inverse overlap frequency values are then summed to generate a
length-IOF score for that overlapping region. The additional content
in the second overlap (“ improved”) greatly increases the effect of
that overlap on the ranking of these documents, as can be seen in the
respective length-IOF scores:

length-IOF(Overlap 1): 5.5
length-IOF(Overlap 2): 14.5

The overlapping regions from each historical document are scored
in this way, and the scores summed to generate an overall rank for
that historical document. Therefore, common overlapping sections
are considered important if they are large, while shorter common
overlapping sections have much less influence. This has the added
benefit that the large sections which are common are more evident
when users are viewing results, and these regions can more easily be
marked as open, if indeed they are inconsequential.

4 EVALUATION
The InfoTracker prototype generates a list of documents that are
deemed similar to the query document. To obtain an initial gauge of
the performance of this approach, we have conducted an exploratory
experiment. The performance of the InfoTracker prototype is evalu-
ated with precision/recall measurements, as generally used for search
tasks. A vector-space approach using a cosine similarity metric was
used to provide a point of comparison, since the vector-space ap-
proach is well known and understood. The vector-space implemen-
tation uses a typical bag-of-words with TF–IDF weights. No stop
words were used in either approach.

4.1 Experimental Data
Our evaluation uses a corpus of 272 proposals prepared by a sin-
gle company between January 1st, 2000 and December 31st, 20073.
These documents share considerable content in the form of person-
nel resumés, facilities descriptions, related work, and smaller por-
tions of the techniques shared by proposals in similar technological
areas. Additionally, each proposal uses the same document template
and has nearly identical headers, footers, section headings and other
ancillary text.

This corpus presents two real-world challenges to plagiarism de-
tection and information provenance. Much of the duplicated content
is gradually updated over the years from proposal to proposal. This
introduces hundreds of minor alterations as authors fix typos, intro-
duce new typos, specialize content for the topic at hand, rename old

3 These documents range in size from 44.0 kilobytes to 111.6 kilobytes (µ =
80.0, σ = 11.9).

projects, or introduce new project names into sections that are largely
boilerplate. Each of these changes breaks a previously contiguous
section of duplicated content into smaller pieces. Furthermore, many
portions of content that are duplicated are of no interest or concern
whatsoever. One can imagine that the only “secrets” to be protected
in this corpus are directly related to the technologies that were pro-
posed over the years. The collection of resumés and shared related
work sections are typically benign, and would be safe for public re-
lease. These benign sections should therefore not influence the selec-
tion of source documents when identifying the pedigree of a proposal
in order to inform the classification of that proposal’s content.

4.2 Experiment Description
The proposals in this data set were divided into two groups:

2000-2006 proposals (234 documents): These proposals were
loaded as historical documents, with the key personnel, company
description, and related work sections automatically marked as
open4 and with the remainder of the documents’ content marked
as sensitive. The authors of these proposals indicated that those
sections are very rarely subject to substantial change, and it is
reasonable to assume that this type of foreknowledge is available
to some degree in many real-world scenarios.

2007 proposals (38 documents): The more recently authored pro-
posals were used as a test set. Each proposal was loaded as a query
document (in the order they were authored) and the documents re-
turned were recorded as the results. The query document was then
added to the InfoTracker tree in the same way as the historical doc-
uments. This allows for recent documents that reference proposals
written since 2006 to be properly handled.
One of the proposal authors built an oracle by manually examin-
ing each of the 38 query documents and comparing each query
document with the full collection of 272 proposals to determine
which (if any) proposals were sources of significant content. Eight
documents were deemed to derive content from no other propos-
als in the corpus, one document drew content from 23 others, and
the remaining 31 documents were arrayed in the intervening range
(µ = 4.76, σ = 5.16).

In our experiment, we initially loaded the suffix tree with a large
collection of general text from the web to provide a base open col-
lection before indexing the 234 historical documents and processing
the query documents. This initial open collection consisted of 590
documents, with a total size of 780MB.

4.3 Results
Both InfoTracker and the vector-space approach generated lists of
results for each query that are nearly all-encompassing. Nearly ev-
ery historical document was included in the InfoTracker results (al-
though many documents have very low scores) and the vector-space
approach, by design, simply ranked every document. In order to de-
termine meaningful values for precision and recall we needed to cut
off the results list at a shorter, more reasonable length. Because of the
number of results in the oracle, we decided to consider the top 23 re-
sults for each query for both algorithms. This is the lowest number of
results that can possibly have 100% recall. Table 1 shows the results
for the two approaches. Note that the precision values are particu-
larly low because most of the query documents have very few true

4 A simple template consisting of regular expressions was used to identify
these sections.

source documents (µ = 4.76) compared to the size of the result list
considered (23).

Algorithm Precision Recall
Vector Space 0.119 0.764
InfoTracker 0.167 0.913

Table 1. Results for InfoTracker compared to the vector space approach
for detecting source documents.

4.4 Trimming Results
The ranked list of results generated by the prototype are generally too
large to be of use in an automated system, since most of the results
are false positives. In our experimentation this has resulted in lists
of 106–232 related documents for a given query. Observation of the
results for one query indicate that the ranking scores fit a skewed dis-
tribution with a very long flat tail. This tail is made up of documents
that only share boilerplate content with the query document.

Table 2 shows the top 15 results for a query, along with the scores
for each retrieved document. Notice that the top six results have sub-
stantially higher scores than the remainder. One justification for this
immediate fall-off of the ranking scores is that the tail consists of
documents that share content of no importance (headers, footers, sec-
tion titles and the like) while the first few results are drawn from a
different population of documents that share substantial content with
the query document. If this assumption is valid, then the top ranked
results should be outliers with respect to the rest of the retrieved re-
sults.

Table 2. The top 15 (of 116) results for a document query in the
InfoTracker prototype.

Rank Score File
1 6289.995 Document-92
2 3206.340 Document-21
3 1630.607 Document-13
4 1366.318 Document-46
5 1157.704 Document-1
6 1103.442 Document-43
7 624.238 Document-114
8 327.533 Document-67
9 273.651 Document-74
10 263.037 Document-48
11 244.407 Document-10
12 238.435 Document-113
13 207.320 Document-101
14 134.991 Document-58
15 131.520 Document-12
.

The prototype uses a definition of outliers that is based on the
inter-quartile range5 to determine which results to retain and which
should be trimmed. Equation (3) shows how the threshold for trim-
ming is calculated:

threshold = Q3 + (N × (Q3 −Q1)) (3)

Q1 represents the lower end of the inter-quartile range,Q3 represents
the upper end of the inter-quartile range, and N is a constant that

5 The inter-quartile range, or IQR, is the range of values that includes the
middle 50% of the data points in a distribution, 25% of the data falls below
the IQR, while 25% of the data have values greater than the IQR.

determines the degree of extremity required of the outliers.N can be
used to shift the balance between precision and recall. For example,
the full 116 data points of the results in Table 2 have a lower quartile
of 1.837 (Q1) and an upper quartile of 47.250 (Q3), indicating that
29 data points have scores under 1.837 and 87 data points have scores
under 47.250. With N = 6, the threshold is set to 319.728, and only
the top seven results are retained.

The experiment described in Section 4.2 was run with varying val-
ues of N from the range [0–6]. Low values of N represent very con-
servative estimates of the distribution of unrelated documents, and
sets a low threshold for outliers. Each full-unit increment increases
the threshold by an amount equal to the inter-quartile range, trim-
ming the query results more aggressively. The full test corpus of 38
query documents was run on each successive value of N and the
average number of results, average precision, and average recall are
recorded in Table 3.

Table 3. Precision/Recall statistics for the pedigree detection experiment,
as a function of outlier extremity.

N Result Count Precision Recall
No Trimming 162.53 0.03 0.98
0 40.95 0.11 0.97
0.5 28.71 0.14 0.93
1 22.29 0.16 0.91
1.5 18.92 0.19 0.90
2 15.81 0.21 0.88
2.5 13.47 0.23 0.87
3 11.76 0.24 0.84
3.5 10.50 0.26 0.84
4 9.63 0.27 0.81
4.5 8.82 0.29 0.80
5 8.18 0.31 0.78
5.5 7.55 0.33 0.78
6 7.13 0.36 0.77

Table 3 clearly shows the control available over the balance be-
tween precision and recall, and demonstrates the amount of result
trimming that can safely be applied for a desired level of recall. Even
the most minimal trimming attempted shortened the results list by
over 60% (compared to the initial minimum size of 106 results) yet
only reduced average recall by 1% compared to the case where no
trimming was done.

5 CONCLUSIONS AND FUTURE WORK
During the execution of this project, we have identified a number of
directions to pursue in the future:

Evaluate in an Active Learning scenario: Foremost in our future
goals is to perform an exhaustive evaluation of the InfoTracker
prototype in a scenario that takes advantage of Active Learning to
identify and mark boilerplate content while the system is in use.

Incorporate time stamps: The current approach does not take the
temporal aspect of document authoring and reuse into account
when determining pedigree. Therefore, if a query document shares
a source with a historical document, then both the source and the
sibling document are likely to be returned in the list of results.
These false–positive results can be reduced by considering the
dates that the returned documents are authored, possibly present-
ing the results hierarchically, or only returning either the youngest
or oldest sources.

Overlap size: Another indication of the actual structure of the doc-
ument pedigree is available in the content of the overlapping sec-
tions themselves. For example, if document C contains content

taken directly from documentB, which was originally taken from
document A, there is a chance that the overlapping section that C
shares with B will be larger than the overlapping section found to
be common to C and A. Indeed, it is highly likely that the over-
lapping content between C and A is a proper subset of the over-
laps shared betweenC andB. In–depth analysis of the similarities
between overlapping content shared between multiple documents
may reveal more intricacies of the document pedigree.

Alternative outlier definitions: The characteristics of the flat tails
of each results list may more closely fit a certain type of distri-
bution. If so, a more complex outlier detection method (such as
Grubbs’ Test for Outliers [5]) may be able to determine a thresh-
old for result trimming that improves precision.

We have presented an approach to document indexing and search
that enables the detection of document pedigree when substantial an-
cillary content is present. We have compared this approach to the
common vector-space approach used frequently for information re-
trieval tasks, showing that our approach is better able to manage
the presence of ancillary content. InfoTracker makes use of efficient
disk-based data structures that promise to scale well with large cor-
pora that do not fit in memory; however, a thorough evaluation of the
scalability of InfoTracker is still a topic for future investigation.

Evaluation on the proposal data set revealed that a great deal of
control is available over the precision/recall trade-off. This can be
incorporated into tools in the future to adapt to the needs at hand. For
example, applications dealing with the dissemination of potentially
classified content will require a high degree of recall, while an ap-
plication where the emphasis is on immediate results may choose to
avoid false positives with higher precision.

REFERENCES
[1] TurnItIn. Website: http://www.turnitin.com, June 2008.
[2] Sven M. Eissen, Benno Stein, and Martin Potthast, ‘The suffix tree doc-

ument model revisited’, in Proc. of the 5th International Conference
on Knowledge Management (I-KNOW 05), pp. 596–603, Graz, Austria,
(July 2005). Know-Center. ISSN 0948-695x.

[3] David Eppstein, Zvi Galil, Raffaele Giancarlo, and Guiseppe F. Italiano,
‘Efficient algorithms for sequence analysis’, in SEQS: Sequences ’91,
(1991).

[4] Paolo Ferragina and Roberto Grossi, ‘The string b-tree: a new data
structure for string search in external memory and its applications’, J.
ACM, 46(2), 236–280, (March 1999).

[5] Frank E. Grubbs, ‘Procedures for detecting outlying observations in
samples’, Technometrics, 11(1), 1–21, (February 1969).

[6] Timothy C. Hoad and Justin Zobel, ‘Methods for identifying versioned
and plagiarized documents’, Journal of the American Society for Infor-
mation Science and Technology, 54(3), 203–215, (2003).

[7] H. V. Jagadish, Alberto O. Mendelzon, and Tova Milo, ‘Similarity-
based queries’, in PODS ’95: Proc. of the fourteenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems, pp.
36–45, New York, NY, USA, (1995). ACM.

[8] Donald Metzler, Yaniv Bernstein, Bruce W. Croft, Alistair Moffat, and
Justin Zobel, ‘Similarity measures for tracking information flow’, in
CIKM ’05: Proc. of the 14th ACM international conference on Informa-
tion and knowledge management, pp. 517–524, New York, NY, USA,
(2005). ACM.

[9] Benno Stein, ‘Fuzzy-fingerprints for text-based information retrieval’,
in Proc. of the 5th International Conference on Knowledge Manage-
ment (I-KNOW 05), pp. 572–579, Graz, Austria, (July 2005). Know-
Center. ISSN 0948-695x.

[10] Esko Ukkonen, ‘On-line construction of suffix trees’, Algorithmica,
14(3), 249–260, (1995).

[11] W. J. Wilbur and David J. Lipman, ‘Rapid similarity searches of nucleic
acid and protein data banks’, PNAS, 80(3), 726–730, (February 1983).

