Introduction

Intrinsic Plagiarism Analysis

Meta Learning

Case Study

Intrinsic Plagiarism Analysis with Meta Learning

Benno Stein and Sven Meyer zu Eissen

Bauhaus University Weimar Web-Technology and Information Systems

Stein/Meyer zu Eissen

On Plagiarism Analysis

"Plagiarism refers to the use of another's ideas, information, language, or writing, when done without proper acknowledgment of the original source." [Wikipedia]

Fact: About 40% of the students admit to plagiarize from Internet documents (study on 50,000 students).

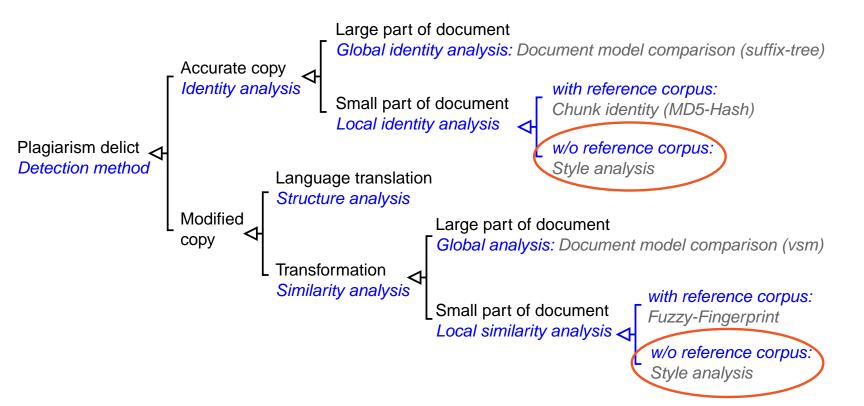
[McCabe 2005]

Plagiarism analysis:

Introduction

Intrinsic Plagiarism Analysis

Meta Learning

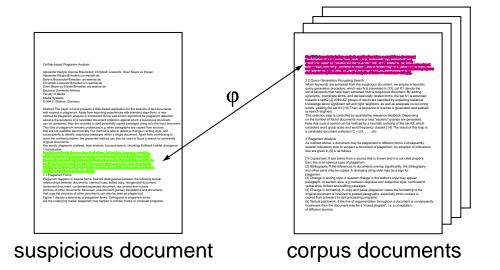

Case Study

Given. A suspicious document. *Task.* Find copied parts

(and, if possible, provide references to original sources).

Plagiarism Forms

Plagiarism may happen in manyfold variants:

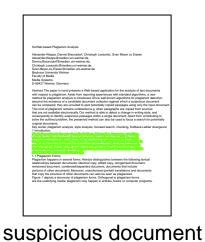


Current Research on Plagiarism Analysis

Current research is mainly corpus-oriented.

e.g. [Stein et al. 2004-2006, Monostori et al. 2001-2004].

- *Given.* A suspicious document *d* and a corpus of original documents.
- *Task.* Find potentially copied parts from *d* in the corpus, and provide references to original sources.



Introduction

Intrinsic Plagiarism Analysis

Meta Learning

What can be done if sources are not available in digital form?

<section-header><text><text><text><text><text><text><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Introduction

Intrinsic Plagiarism Analysis

Meta Learning

Case Study

Research focus:

- *Given.* A suspicious document and a corpus of original documents.
- Task. Find potentially copied parts.

Goal. Model the human capabilities in detecting "somewhat different" sections.

Method. Quantify changes in writing style.

[Meyer zu Eissen and Stein 2006]

Operationalization.

style markers for the entire document (global) 0,12 0.1 0,08 0.06 0,04 0,02 * of "have *otmodals . of prepositions *01,90 totrel. Pronout 0,12 0,1 0,08 0,06 0,04 0,02 # of thave *01,DE *otrodals # of prepositions *0, 90 *oftel. Pronou

Introduction

Intrinsic Plagiarism Analysis

Meta Learning Case Study

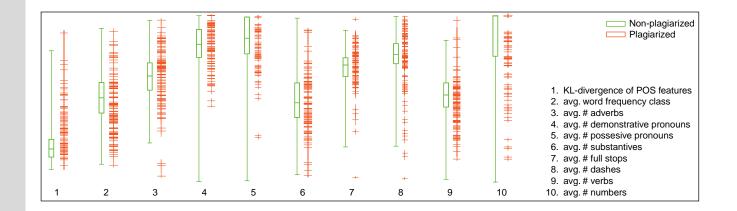
style markers for a single paragraph (local)

Stein/Meyer zu Eissen

Algorithm for intrinsic analysis:

- 1. Let $\sigma_1, \ldots, \sigma_m$ denote style markers.
- 2. For each section $s \subseteq d$:
- 3. compute style model $\mathbf{s} = \begin{pmatrix} \sigma_1(s) \\ \vdots \\ \sigma_m(s) \end{pmatrix} \in \mathbf{R}^m$ compute relative deviations $\mathbf{s}_{\Delta} = \begin{pmatrix} \frac{\sigma_1(s) - \sigma_1(a)}{\sigma_1(d)} \\ \vdots \\ \frac{\sigma_m(s) - \sigma_m(d)}{\sigma_m(d)} \end{pmatrix} \in \mathbf{R}^m$ 4.

Introduction


Intrinsic Plagiarism Analysis

Meta Learning

Case Study

5. use instances of s_{Λ} for an outlier analysis.

Distribution of 10 style markers: 16,000 non-plagiarized sections (green) 1,500 plagiarized sections (red)

Introduction

Intrinsic Plagiarism Analysis

Meta Learning

Success using a discriminant analysis on the \mathbf{s}_Δ on a hand-made corpus:

About 70% in precision, 80% in recall.

Improvement if the fraction θ of plagiarized passages is known.

Challenge:

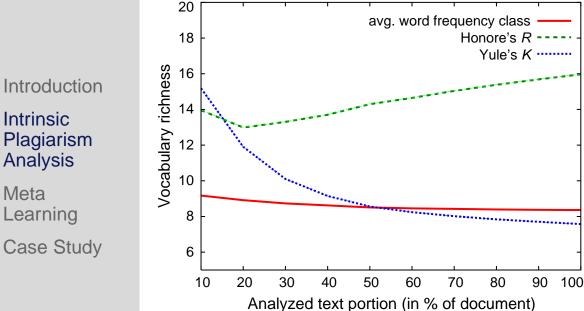
Find style markers that are reliable for short texts.

style marker σ_i	unit of measure	reliability level
avg. paragraph length	paragraph	document
Flesch index	document	document
avg. sentence length	sentence	paragraph?
avg. word length	word	paragraph
avg. word frequency class	word	paragraph

Introduction

Intrinsic Plagiarism Analysis

Meta Learning


Success using a discriminant analysis on the s_{Λ} on a hand-made corpus:

About 70% in precision, 80% in recall.

Improvement if the fraction θ of plagiarized passages is known.

Challenge:

Find style markers that are reliable for short texts.

An intrinsic analysis (as shown)

- is very useful for preselecting suspicious sections (for human inspection, for Web search)
- □ is ambitious from the modeling perspective.

An intrinsic analysis can be used to answer the following question (with high probability):

Is a given document *d* written by a single author?

Introduction

Intrinsic Plagiarism Analysis

Meta Learning

Meta Learning

Meta Learning: Method for authorship verification.

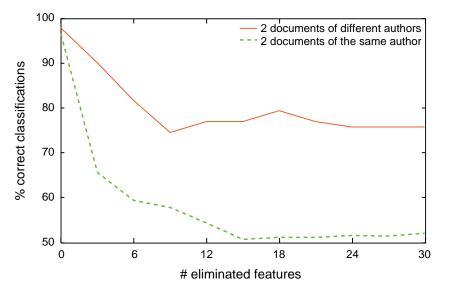
[Koppel and Schler 2004]

Authorship verification:

Given. d_1, d_2 . *Task.* Decide whether d_1, d_2 are written by the same author.

Procedure:

- 1. *Chunking.* Decompose d_1, d_2 into sets of chunks D_1, D_2 .
- 2. *Model fitting.* Build a VSM for each chunk in D_1, D_2 . The VSM includes only the 250 most frequent words. Learn a function that discriminates between D_1 and D_2 .
- 3. *Impairing.* Drop the 3 most discriminating features from the VSMs.
- 4. Goto Step 2 until feature space is sufficiently reduced.
- 5. *Meta Learning.* Analyze the degradation in the quality of model fitting.


Introduction

Intrinsic Plagiarism Analysis

Meta Learning

Meta Learning

Expected outcome:

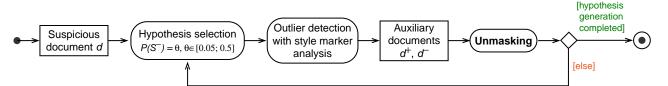
Rationale:

Intrinsic Plagiarism Analysis

Introduction

Meta Learning

- □ A large fraction of the 250 words are function/stop words.
- □ Only some of the words are related to topic.
- Only some words do the discrimination job (e.g. these topic words).
- Different authors can be distinguished by their use of function words.


Meta Learning

Problem: Länge der Texte unklar.

Meta learning cannot be applied directly

(there is a combinatorial problem)

The proposed process:

Introduction

Intrinsic Plagiarism Analysis

Meta Learning

Case study

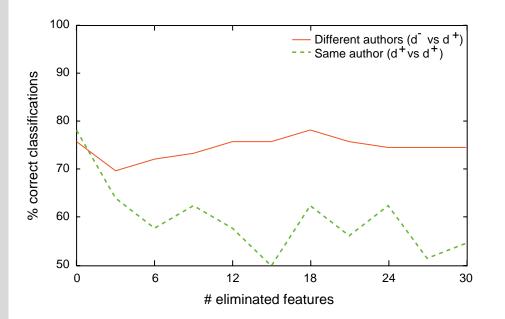
Setting:

- □ Given: A German habilitation thesis from the 1980s.
- □ The habilitation was suspected to be plagiarized.
- □ Related books are not available in electronic form.

Procedure:

- □ The thesis was scanned.
- □ It was converted to plain text using OCR technology.
- □ It was decomposed into 138 natural sections.

Introduction


Intrinsic Plagiarism Analysis

Meta Learning

- 13 suspicious sections were identified as d⁻ (using intrinsic plagiarism analysis).
- □ (Three of them are confirmed to be plagiarized)
- □ Meta learning was applied:
 - d^- versus randomly drawn sections, d^+ , from the remainder.

Case study

Results of the meta learning approach:

Introduction

Intrinsic Plagiarism Analysis

Meta Learning

Case Study

 \rightarrow Clear indication that d^- contains plagiarized passages.

Thank You!

Questions?

Introduction

Intrinsic Plagiarism Analysis

Meta Learning