Gradual Argumentation Evaluation for Stance Aggregation in Automated Fake News Detection

Imperial College London

Neema Kotonya & Francesca Toni | Department of Computing, Imperial College London

{n.kotonya18, f.toni}@imperial.ac.uk

INTRODUCTION

Fake news has existed for as long as news has been in circulation. However, the automated detection of fake news has recently become a hot-button topic. To our knowledge, this work is the first attempt to apply argumentation to the problem of fake news detection.

BACKGROUND

Anabstractargumentationframework is a pair $\langle \mathcal{A}, \mathcal{R} \rangle$ consistingof arguments \mathcal{A} and binary attackrelation \mathcal{R} over these arguments.

METHOD

u1/source tweet: Up to 20 held hostage in Sydney Lindt Cafe siege $\langle URL \rangle \langle URL \rangle$ [SUPPORT]

-u2/reply 1: "@u1: Up to 20 held hostage in Sydney Lindt Cafe siege (URL) (URL)." [SUPPORT]

-u3/reply 2: Sick. "@u1: Up to 20 held hostage in Sydney Lindt Cafe siege $\langle URL \rangle \langle URL \rangle$ " [SUPPORT]

—u4/reply 3: @u1 @u10 oh god !!!! [COMMENT]

-u5/reply 4: @u1 at least they've got good chocolate [COMMENT] -u6/reply 5: @u5 you are an in-

sensitive idiot! [COMMENT]

—u7/reply 6: @u1 all reports say 13 [DENY]

-u8/reply 7: "@u1: Up to 20 held hostage in Sydney Lindt Cafe siege $\langle URL \rangle$ $\langle URL \rangle$ " - wonder if they'll get paid overtime [COMMENT]

We mined

RESULTS

We leveraged a DF-QuAD-based evaluation method to predict the veracity (true/false) claims presented in the RumourEval tweets.

Dataset	Model	Agree			DISAGREE			DISCUSS		
		Р	R	F1	Р	R	F1	Р	R	F1
FNC-1	GB	.831	.736	.781	.570	.322	.412	.926	.972	.934
	GRU	.645	.685	.665	.402	.244	.304	.876	.887	.882
	LSTM	.817	.878	.846	.652	.493	.562	.964	.955	.960
	BiLSTM	.829	.840	.835	.676	.493	.570	.949	.965	.957
Rumour	LSTM	.166	.490	.248	.160	.0119	.0222	.753	.513	.610
Eval	BiLSTM	.178	.430	.252	.105	.0448	.0628	.759	.576	.655

Precision (P), recall (R), and F1-score (F1) of stance detection classifiers on FNC1 test set and RumourEval.

Bipolar Argumentation Frameworks (BAFs) incorporate support relations as well as attack relations.

BAFs from Twitter conversation threads source tweet reply 6 reply 1 reply 2 We used the We employed computed DF-QuAD to strength value evaluate the predict the strength of veracity of source source tweets. tweets. $v(C) = \begin{cases} true \ if \ \sigma(C) > 0.5 \\ false \ if \ \sigma(C) \le 0.5 \end{cases}$

	Stance aggregation method	it (Rum	RumourEval Task B)				
			False		True		
		Р	R	F1	Р	R	F1
Gold standard labels (RumourEval Task A)	CREDIBILITY-WEIGHTED AVERAGE	.581	.383	.462	.743	.866	.800
	DF-QUAD (DR)	.625	.532	.575	.789	.845	.816
	DF-QUAD (DR + NR)	.615	.511	.558	.781	.845	.811
I CTM stoppe	CREDIBILITY-WEIGHTED AVERAGE	.750	.079	.143	.746	.990	.851
dataction labels	DF-QUAD (DR)	.667	.105	.182	.750	.981	.850
detection labers	DF-QUAD (DR + NR)	.667	.105	.182	.750	.981	.850
Bidirectional LSTM stance detection labels	CREDIBILITY-WEIGHTED AVERAGE	.400	.050	.089	.719	.970	.826
	DF-QuAD (DR)	.500	.075	.130	.724	.970	.829
	DF-QuAD (DR + NR)	.500	.075	.130	.724	.970	.829

Precision (P), recall (R), and F1-score (F1) of stance aggregation methods when applied to gold standard labels and the stance labels predicted by LSTM and BiLSTM trained stance classifiers

QuantitativeArgumentationDebates (DF-QuAD)is a method forevaluatingthe strength of anargument according to the dialecticalstrengthof its attackers andsupporters.

REFERENCES Neema Kotonya and Francesca Toni. *Gradual Argumentation Evaluation for Stance Aggregation in Automated Fake News Detection.* Proceedings of the 6th Workshop

on Argument Mining. 2019.